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Abstract 

Fog Computing is now emerging as the dominating paradigm bridging the compute and 
connectivity gap between sensing devices (a.k.a. ―things‖) and latency-sensitive services. However, as 
fog deployments scale by accumulating numerous devices interconnected over highly dynamic and 
volatile network fabrics, the need for self-configuration and self-healing in the presence of 
failures is more evident now than ever. Using the prevailing methodology of self-stabilization, we 
propose a fault-tolerant framework for distributed control planes that enables fog services to cope 
and recover from a very broad fault model. Specifically, our model considers network uncertainties, 
packet drops, node fail-stop failures and violations of the assumptions according to which the system 
was designed to operate, such as an arbitrary corruption of the system state.   Our self-stabilizing 
algorithms guarantee automatic recovery within a constant number of communication rounds 
without the need for external (human) intervention. To showcase the framework’s effectiveness, the 
correctness proof of the proposed self-stabilizing algorithmic process is accompanied by a 
comprehensive evaluation featuring an open and reproducible testbed utilizing real- world data from 
the intelligent transportation domain. Results show that our framework ensures a fog ecosystem 
recovery from faults in constant time, analytics are computed correctly, while the overhead to the 
system’s control plane scales linearly towards the IoT load. 

 

1 Introduction 

Fog and Edge Computing are the technologies enabling computation at the network extremes, such 
as on downstream data, on behalf of cloud services, and upstream data, on behalf of IoT services 
[21]. The rationale of fog computing is that computing should happen at the proximity of the data 
source with the ―fog‖ constituting any compute and network resources along the path between the data 
and the cloud. In this context, the ―edge‖ differs from traditional sensing devices in that sensory data 
are processed in proximity and converted from raw signals to contextually relevant information [26]. 

In light of this, recent advancements in fog computing suggest using cloudlets as intermediate 
compute platforms between IoT devices (edge devices) and the cloud which allow users to exploit the 
analytic power of the cloud without incurring the high latency in communicating with remote clouds [8]. 
A cloudlet (also referred as a foglet, gateway, microcloud) can be a single server or a small cluster of co-
located servers that form a (virtual) pool of shared resources but from an external viewpoint are 
considered a single entity [17]. Compared to traditional datacenters, a cloudlet features much more 
limited resources, albeit its proximity to IoT devices makes it appealing for offloading compute tasks 
and receiving timely responses. 

Although fog computing brings the computation closer to delay-sensitive services, the challenges 
re- stricting the cloud paradigm still remain as the pace of generated data continues to rise [25]. 

Now, these 
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overwhelming volumes of data not only have to be processed in time, but must be processed on, arguably, 
―weaker‖ hardware with potential nodes being vehicles, sensors, wifi access points, drones, cameras, and 
even wearable devices.  Also, fog infrastructure usually operates in geo-distributed and less controlled 
environ- ments, with many applications competing for limited resources against high-priority services 
(e.g., 5G) [24]. Consequently, failures due to hardware limitations and network uncertainties are highly 
likely at the fog continuum spanning between users, things, and clouds [5].  To maintain high availability, 
fog infrastructure must be resilient to both node and network failures.  Thus,  self-managing and self-
healing solutions are required for fog ecosystems. IoT services must be able to recover from any issues 
that arise during their lifetime. In this context, it is critical to ensure continuous operation and 
recoverability at scale even in the event of failure without human involvement. In particular, cloudlets 
must satisfy the increasingly stringent fault-tolerance specifications of today’s internet-enabled systems. 
In the current fog computing paradigm, fault-tolerance must be implemented to both preserve the system 
state locally at the edge and ensure the accuracy of analytics computations,  especially in the case of a 
node failure or intermittent long-distance network connectivity problems. 

We propose to address the challenge of dependable fog computing by using a fault-tolerant control 
plane that ensures service availability and data freshness  in  spite  of the  dynamic  nature  of the  fog  
continuum. Via inter-connection of IoTs (edge devices), cloudlets and remote clouds, the proposed 
solution can tolerate network uncertainties, communication drops as well as cloudlet and IoT failures. In 
addition to these benign failures, our algorithms follow a very strong notion of fault-tolerance, called self-
stabilization [13], which has provided the Internet with automatic failure recovery as early as the 1980’s  
[19].  Self-stabilization ensures that the fog can recover after the occurrence of any temporary 
violations to the assumptions according to which the system was designed to operate.  These violations 
can include,  for example,  state corruption, extreme number of node failures, network partitions or 
unexpected system  reconfiguration.  Once  such transient violations occur,  non-self-stabilizing systems 
cannot guarantee correct system behavior due to data loss or the propagation of corrupted information.  
The correctness proof of a self-stabilizing system is required to guarantee recovery, within finite time, 
after the occurrence of the last transient violation. 

Contribution and Research Outcome. This paper addresses the problem of how to tolerate and recover 
from run-time faults in distributed fog computing ecosystems. We consider a typical fog computing 
architecture, where edge devices are interconnected with remote clouds via network elements, denoted as 
cloudlets. Specifically: 

- We introduce a self-stabilization framework for distributed control planes. The control plane is the 
core of the ecosystem and manages the network fabric with a global viewpoint and establishes the 
routing path of data serviced by geo-distributed cloudlets.  To the best of our knowledge, we are the 
first to introduce a self-stabilizing framework for control planes enabled over fog and edge 
ecosystems [18]. 

- To deal with a broad fault model that includes both communication and node failures, our correctness 
proof details how the proposed self-stabilizing solution can recover within a constant number of 
communication rounds, after the occurrence of transient faults, as required by [12]. 

- To illustrate both the effectiveness and low runtime footprint of our framework at scale, we 
introduce a thorough evaluation using real-world data and actual queries of interest from an 
intelligent transportation service. Our results are reproducible and the reference implementation 
(including configuration and test data) is open-source and available online

1
. Our experiments 

validate our analysis and show that even in the presence of severe failures, our solution can always 
recover in constant time while the network overhead scales linearly towards the IoT load. 

 

Paper organization. Section 2 reviews related research. Section 3 presents the system model and objec- 
tives before proposing the solution for realizing the system in Section 4. Section 5 presents the 
correctness proof. Section 6 presents the experimentation, followed by the conclusion. 
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 Frequency 

Duration Rare Not rare 
 

Transient 
Any violation of the assumptions 
according to which the system 
operates (as long as the code stays 
intact). 
This can result in any state 
corruption. 

Packet failures: 
omissions, duplications, 
reordering (assuming 
communication 
fairness holds). 

Permanent Fail-stop failures. 

 

 

 

 
   

Need fair execution, i.e., consider only packet failures Consider all benign faults 

 

Figure 1: Table details the fault model and the chart illustrates when each fault set is relevant. The chart’s gray shapes 
represent the system execution, and the white boxes specify the failures considered to be possible at different 
execution parts and recovery guarantees of the proposed self-stabilizing algorithm. The set of benign faults includes both 
packet failures and fail-stop failures. 

 

2 Related Work 

Fog and edge infrastructures are typically composed by hundreds of thousands to millions of 
heterogeneous and interacting components, which lead to the emergence of different types of faults. A 
major challenge in fog and edge computing is to define the fault and failure coverage required to 
provide high QoS [16]. Faults may occur either simultaneously or in any aspect of system operations 
ranging from application to hardware, and may have several causes, including insufficient memory, 
performance interference, system utilization, network congestion, server faults, application crashes, 
etc. Due to these challenges, existing work on fault- tolerance in large-scale distributed systems often 
have limitations in terms of practicality and performance guarantee. In [16], authors introduce 
CESSNA, a framework that provides consistency guarantees for stateful edge applications. CESSNA 
uses the Fault-Tolerant MiddleBox [20], which adopts the classical approach of ―rollback recovery‖ 
where a system uses information logged during normal operation to correctly reconstruct state after a 
failure. In [27], authors present a fault-tolerant messaging architecture for edge systems. The fault-
tolerance is achieved by introducing timing bounds that capture the relation between service 
parameters and loss-tolerance requirements. In [28], a fault-tolerant framework for data transmission 
in fog computing is introduced. The proposed fault-tolerance mechanism combines the advantages of 
Directed Diffusion and Limited Flooding to enhance the reliability of data transmission. We note that 
none of these solutions provides a holistic approach for addressing the fault-tolerance in edge and 
fog ecosystems. 

Our framework fits naturally in distributed control planes, such as Istio and Linkerd [3, 4], that 
decouple operational control, policy enforcement and behavior telemetry from the business logic of 
distributed network fabrics and microservices. These frameworks provide fault-tolerance in the form 
of timeouts and (number of) retries for labelling nodes servicing HTTP requests as failed. In turn, 
circuit breaking is provided to safe-guard nodes overwhelmed by requests so that nodes ―fail fast‖ when 
requests exceed the denoted limit. Thanks to our self-stabilizing algorithmic process, distributed 
control planes are introduced to a very strong notion of fault-tolerance on network uncertainties, 
communication drops, configuration errors, arbitrary transient violations, cloudlet and IoT fail-stop 
failures. In turn, no combination of faults can yield the system execution or corrupt data 
computations. 

In the context of self-stabilizing algorithms and IoT, Siegemund et al. [22] present a self-stabilizing 
pub- lish/subscribe middleware for IoT applications. Their basic idea is that fault-tolerance is 
ensured through the construction of a distributed self-stabilizing data structure based on a virtual ring. 
However, operations over this ring take  (n) time even in the absence of failures, where n is the ring size. 
Canini et al. [10] present a self-stabilizing distributed control plane for software-defined networks (SDNs). 
Their work assumes that all nodes are either client hosts, switches or controllers.  The algorithm 
stabilizes within O(d

2
n), where d is the 
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network diameter and n is the number of nodes.  Chattopadhyay et al. [11] integrate an SDN control plane 
with the in-network processing infrastructure that can offload IoT services. They use a single centralized 
ser- vice deployment controller and lightweight SDN micro-controllers (µC). They mention that their 
algorithm for µC placement is self-stabilized with a linear convergence time (but no formal proof is 
provided). We provide both analytical and empirical proof for convergence in constant time. The state-
machine replication technique used in this paper is inspired by practically-self-stabilizing virtual 
synchrony [14]. However, the proposed self-stabilizing solution has a much easier to understand 
leader election mechanism than the one in [14]. Moreover, our self-stabilizing solution stabilizes in 
constant time whereas the one in [14] does not have a bounded stabilization time (by the definition of 
the solution criteria of practically-self-stabilizing systems). 

While interesting and relevant, the above works do not address the impact of strong fault-
tolerance in a hierarchical network organization that includes cloud infrastructure, cloudlets that are 
placed at the network edge and IoT devices. Our recovery time is within (1) and our placement 

mechanism convergence is within (1). We base our proofs on the definition of self-stabilizing systems 
[13]. The definition requires the entire system to use bounded memory and recover after the occurrence 
of any transient violation of the assumptions according to which the system was design to operate. To 

the best of our knowledge, this is the first work 

that introduces a self-stabilizing control plane for the edge and fog ecosystems. 

 

3 The System 

Informatics is a science of abstractions, and a main difficulty consists in providing users with a 
―desired level of abstraction and generality — one that is broad enough to encompass interesting 
new situations, yet specific enough to address the crucial issues‖ [15]. This work provides a model 
that has the right-level of abstraction for the case edge computing since it allows both analytical and 
experimental study of the problem. We consider a fog computing system comprised of sets of nodes, 
such as the one of cloudlets C and IoT devices S, as well as a remote cloud infrastructure, which we refer 
to as the Cloud. Each cloudlet features specified communication, computation, and storage capabilities. 
Each cloudlet is associated with a wireless access point covering a local area, referred to as a cell. The 
cloudlets in C form a shared resource pool that can serve the system collaboratively, e.g., aggregating 
IoT data and forwarding it to the Cloud. We assume that the cloudlets can share (over the Internet) 
such aggregated data with the Cloud by accessing a shared repository. The Cloud can use the 
repository to instruct cloudlets, e.g., which queries the IoTs need to serve (edge devices), or provide 
advice the cloudlets on how to organize themselves, e.g., propose the most-suitable leader according to 
the cloudlet specified capabilities and statistics gathered by the Cloud. The cloudlets themselves are 
intra-connected by backhaul links. We assume that, in the absence of failures, the quality of  service of 
these links allow to send data and control messages in a timely manner — this is in contrast to the 
communications between the cloudlets and the Cloud, which we assume to be asynchronous by 
nature. The control plane manages and configures the cloudlets to route traffic and enforce service 
placement with IoT devices. 

Objectives. We aim at developing a fault-tolerant framework for distributed control planes that 
enables large-scale fog services to cope well with communication uncertainties and a broad fault model 
without service downtime or the need for external (human) intervention. Next, we discuss the 
development objectives of the proposed self-stabilizing solution before specifying the system 
requirements. 

 

- O1. The Cloud, cloudlets and IoTs (edge devices) should be able to exchange messages within a 
constant number of messages and communication rounds per information update. 

- O2. The memory space and compute time of any system entity must always be bounded and 
network traffic scale linearly to the number of system entities. 

- O3. The presence of a constant number of benign faults (Figure 1) must not degrade the system 
perfor- mance beyond the bounds that are imposed by the system communication and processing 
delays. I.e., 
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Figure 2: System overview 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: The leader-based architecture 

 
objective O1 must not be violated in the presence of benign faults (and the absence of violations 
considered in objective O4). 

- O4. We also consider arbitrary transient violations of the assumptions according to which the 
system was designed to operate (as long as the algorithm code stays intact). After the occurrence of 
these violations, the system must recover autonomously within a constant number of 
communication rounds and return to satisfy the task specifications. By autonomous we mean the 
absence of external intervention (of a human or a system component that is not part of the proposed 
framework). 

 

Specifications. The control plane for the edge organizes the cloudlet layer (Figure 2), such that in the 
presence of communication and node failures cannot disrupt the execution of services, such as IoT 
queries. In detail, we require the implementation of the following functionality: 

(i) The cloudlet and IoT registration allows the Cloud to include individual nodes in the system (Figure 
2). A node is allowed, after a predefined delay and local cleanups, to register again when it 
notices that it became disconnected from the system due to failures. Note that the latter case is rare, 
and thus, it should not repeatedly consume significant system resources. 

(ii) The query functionality allows the Cloud to request the flow of information according to a model 
that the IoTs (edge devices) are to update periodically. That is, given the Cloud’s current belief about the 
query result, the specified IoTs (edge devices) will update the system whenever the collected sensory 
information deviates from the model. The cloudlet aim here is to aggregate these updates so that a concise 
query result arrives to the Cloud. Since this needs to be done in the presence of communication and 
node failures, each IoT should send its updates to a set of cloudlets and the latter should acknowledge 
(Figure 3).  The cloudlets then should use a leader to unify their updates and forward concise query 
results to the Cloud. The cloudlet layer must function well in case of a failing leader. Therefore, a set of 
cloudlets, called guards, should monitor the leader’s activity and guarantee query result delivery until the 
system decides on a new leader (Figure 4). 

(iii) The management of general purpose services can help to overcome capability differences among 
individual nodes via task load-balancing. Such tasks can be initiated by IoT users that need to 
leverage 
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Figure 4: The inner-structure of the proposed cloudlet layer 
 

Algorithm 1: A high-level overview on algorithms 3 and 4 
 

1 Registers shared between the modules in algorithms 3, 5, and 6 info: has the form of (devices, cloudlets, leader, guards), 
where the field devices is a set of IoT devices, their models and the information needed for failure detection; 
cloudlets is a set of cloudlets and the information needed for failure detection; leader of the form (seq, id) is the 
cloudlets’ current leader and an associated sequence number; guards is a set of  cloudlets  ids  (a subset  of cloudlets) that 
have been selected as guards; 

/* the module for the self-stabilizing cloud (Algorithm 3) */ 

2   Local  variables:  newCloudlet/newIot:  new cloudlets and IoTs (edge devices) and their models; sequence: leadership 
number; 

3 do forever begin 

4 if the reset procedure is inactive and fresh information was recived from all trusted (not to be faulty) cloudlets 

then 

5 Use newIot, newCloudlet and fault detection information for updating devices and cloudlets, respectively; 

6 if leader / cloudlets then elect a leader with sequence++; 

7 if sequence = MAXINT then invoke the reset procedure; 

8 if guards ∩ cloudlets = ∅ then select new guards; 

9 Once the reset procedure is done, initialize all local variables; 

10  upon registration request arrival from an IoT or a cloudlet, update the set newIot and newCloudlet, respectively; 

11  upon RESET message arrival, invoke the distributed reset procedure; 

/* the module for IoT (Algorithm 4) */ 

12 Local variables for the IoT module: model: a data structure that encodes the recent sensory readings; cloudletModel : 
recent model received from the cloudlet; cloudletList: dissemination point list; lastUpdate:  time of the last update 
reception from a cloudlet; msgseq : a positive integer used as a sequence number for messages sent to cloudlets; 
MSG: a set that stores the highest message sequence received; 

13   do forever begin 

14 if lastUpdate was too long ago then initialize and register at the Cloud this IoT; 
15 else if an update is needed then 

16 foreach cloudlet in cloudletList do send   msgseq ++, model ; 

17 if msgseq = MAXINT then invoke the reset procedure; 

18   upon m = ⟨seq, list, model⟩ arrival from a cloudlet do {if  m’s seq is fresh then update cloudletList, cloudletModel , 

lastUpdate and MSG reply;} 

   19  upon reply m = ⟨seq⟩ arrival from a cloudlet, update msgseq;  

on the cloudlet capabilities. Also, cloud services may wish to avoid communication-intensive 
computations, such as virtual traffic light that base its decisions on the current road traffic conditions 
that different vehicles report. The fault-tolerant management of such services can be based on state-
machine replication that is well-synchronized with query operations. 

 

4 Proposed Solution 

Algorithms 1 and 2 provide a high-level description of our solution, and the details appear in algorithms 
3, 4, 5 and 6, which implement the proposed solution to the above task specifications by considering 
the code to be executed by the Cloud, IoT devices, cloudlets, and respectively, the emulators of the 
replicated state-machine. 
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Algorithm 2: A high-level overview on algorithms 5 and 6 

/* the module for the self-stabilizing cloudlet (Algorithm 5) */ 

20 Local variables: deviceSet: a set of IoT devices and their most recently received models; agreegateInfo: a set of data 
structures encoding aggregated sensory information; msgc: a positive integer used for ordering message sent to 
the leader and guards; msgtoiot: a positive integer used for  ordering  messages sent to  IoT devices; MSGc:  a set  of 
(id, seq) pairs that stores the highest message sequence received by cloudlet id; MSGSEQ :  a set of (id, seq) pairs 
that stores the highest message sequence received by IoT id; 

21   do forever begin 

22 if the reset procedure is inactive and i / cloudlets then initialize and register at the Cloud this cloudlet; 
23 else if the reset procedure is inactive then 

24 Use devices, deviceSet and cloudlets to update deviceSet, MSGSEQ and MSGc, respectively; 
25 foreach IoT j that this cloudlet is responsible for do send info about msgtoiot++, the cloudlets that are 

responsible for this IoT and the model of this IoT; 
26 foreach j that is a guard or a leader do send info about msgc++ and the aggregated data received from the IoT 

that this cloudlet is responsible for; 

27 if msgseq = MAXINT then invoke the reset procedure; 

28  upon m = ⟨seq, model⟩ arrival from an IoT do {Acknowledge m and update deviceSet and deviceSet} 

29  upon m = ⟨seq, aggregated⟩ arrival from a cloudlet do {Acknowledge m and update agreegateInfo and MSGc} 

30  upon m = ⟨seq⟩ arrival from an IoT do {update msgtoiot} 

31  upon m = ⟨seq⟩ arrival from a cloudlet do {update msgc} 

/* the module for self-stabilizing replication for guards and leader (Algorithm 6) */ 

32 Local variables: replicaState[]: an array of the state machine’s replica, where rep[i] refers to the one that processor pi 
maintains, and replicaState[j] refers to the last arriving message from pj  containing pj ’s replicaState[j]. myLeader 
stores the identifier of  the  local  leader.  The  term  view refers  to  the  set  of  replicas  that the  leader considers to be 
up and connected, i.e., they can participate in  the  emulation  of  the  state-machine.  FD stores  the processors that the 
(local) failure detector considers as active; 

33     do forever begin 

34 if the Cloud propses leader to be this replica but myLeader does not or the view is not all trusted (not to be failing) guards and 
this replica then propose a view with this replica as a leader as well as all trusted (not to be failing) guards as 
members; 

35 if myLeader refers to this replica but the Cloud proposes another trusted guard then update myLeader to the proposed one; 
36 if this replica is the leader and all replicas have completed a communication round then compute the new state of the 

automaton and update replicaState; 
37 else update replicaState according to the one of the leader replica and send your input to the leader; 
38 if this replica is a guard that is not lLeader but lLeader is suspected (to be failing) then reset myLeader and update data 

about the local state of this replica; 
39 else if the myLeader is well-defined (not reset) then send this replica’s state to leader; 

40 if this replica is the lLeader then broadcast this replica’s state to lGuards ∩ FD; 

   41  upon m arrival from a guard or a leader do {update replicaState with m;}  

Algorithm 3 assumes the availability of a self-stabilizing cloud infrastructure, such as [7]. 
Overview. The Cloud periodically monitors the system and keeps track of the Cloudlets and IoT 
devices that are up and running. Based on this information, and according to some mapping, each 
cloudlet is associated with a list of IoT devices. The IoT devices periodically send their data (e.g., 
sensory information) to their associated cloudlet(s). Instead of having each cloudlet to report directly  
to the cloud, each cloudlet reports its collected data to a leader.  The leader is the one that collects 
and aggregates all data and reports it to the Cloud (via shared registers). The above constitutes a 
―normal‖(fault-free) operation. However, due to unexpected transient faults or more permanent faults 
(e.g., a cloudlet fail-stopping), as well as the need for bounded counters, additional checks must take 
place at the different components of the system. Algorithms 3, 4, and 5 present such details for the 
Cloud, the IoT devices and the Cloudlets, respectively. Furthermore, in the event that the leader fail-
stops, we do not want the data flow to the cloud to be suspended or critical information to be lost. To 
this respect, from the list of operational cloudlets, the Cloud also appoints a set of guards. The purpose 
of the guards is to monitor more frequently the status of the leader and in the event that the leader fail-
stops, they report the latest collected data to the Cloud. Therefore, in Algorithm 5, each cloudlet 
reports its collected data not only to the leader,  but also to the guards.  Since the leader and the 
guards need to maintain consistent information on the collected data (and on any other 
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information the control plane could be maintaining), they run Algorithm 6, which realizes a self-
stabilizing state-machine replication mechanism. In Section 5 we provide the correctness proof 
illustrating that our algorithmic framework can self-stabilize in a constant number of communication 
rounds, while Section 6 shows through a large testbed that there is no information loss even in the 
presence of multiple, different and randomly injected failures to the fog ecosystem. 

We now proceed to present more details. We start by describing the registers that are shared by 
the nodes. Then, we go through the code according the above functionality list. 
Registers. The shared register data stores the aggregated sensory information that is collected by the IoTs 
(lines 65–66), aggregated by their corresponding cloudlets (line 97), and written by the leader (line 125). 
The Cloud and the cloudlet exchange control information via the shared registers info and infoAck . The 
register info includes the fields (IoT) devices, cloudlets, leader and guards. The register infoAck is an array, 
such that the entry infoAck [k] holds pk ’s acknowledgment, where pk ∈ C is a cloudlet and the 
acknowledgment includes all the fields of info. In detail, the Cloud, pcloudID, stores its view on the 
system membership in info (line 56) and cloudlet pk acknowledges the reception of this information by 
copying the value of info to infoAck [k] (line 88).  Moreover, pcloudID selects, when needed, new cloudlets’ 
leader (line 51) and guards (line 53). 
Registration. IoTs (edge devices) and cloudlets register directly at the Cloud by sending a registration 
message (lines 65 and 89) after initializing their local variables and communication channels. This initial- 
ization guarantees that the joining node (or its communication channels) does not hold stale 
information. Once the registration message arrives to the Cloud, pcloudID, the Cloud lists the joining node as 
a newcomer (lines 57 and 58). These newcomers will be listed as the system’s IoT devices and cloudlets 
(lines 49 to 50) after the completion of the previous update round of these sets, which line 48 assures. 
The proposed solu- tion assumes access to unreliable failure detectors. This allows the Cloud not to wait 
for cloudlets that are suspected to be faulty as well as to remove failing nodes from the IoT and cloudlet 
sets. 
Query. We consider queries that are initiated by Cloud applications and require repeated updates. 
These queries include the Cloud current belief about the anticipated result, which we refer to as the 
query model. This allows IoT devices to reduce the number of times in which they transmit results to 
periodic queries since there is no need to transmit a result that fit the current belief of the Cloud 
according to the query model. 

In detail, the registration procedure constructs up-to-date views on the sets of IoT devices and 
cloudlets in the shared register together with the current leader and guards. The proposed solution 
associates with each IoT the query description and model. This information is stored in devices. The 
cloudlets use a function, myIoT (), for mapping between them and the IoTs that they are responsible to 
communicate with (line 96). (A possible mapping could be to have the IoTs being assigned to the 
cloudlets in the same region, based on their proximity. Nevertheless, our system is independent on the 
specific mapping employed.) Cloudlets send the queries (along with their models) to these IoTs. The 
latter store the arriving information and acknowledge (lines 71 to 74).  Once in a predefined periodicity, 
the IoTs update the query results, if needed (line 66). The cloudlets acknowledge the update arrival (lines 
74 and 104). The cloudlets in turn periodically aggregate the sensory information received by the IoTs 
and send it to the leader and the guards (line 97). The leader updates the shared repository with the 
query results (line 125), whereas the guards serve as warm-backup leaders. We assume access to the 
functions electLeader() and selectGuards() that for a given set of system cloudlets elect a leader and select 
guards, respectively. In electing a leader and guards, we may want nodes that are more stealth, maybe 
closer to the IoT devices or in the center of the coverage area (e.g., in the center of the city); the 
leader/guard selection problem can be inherent to the fog service placement problem (FSPP) [23], which 
is a different challenge in fog computing than the studied one. Nevertheless, in our system we could 
swap in/out FSPP algorithms and we are resilient to the algorithm in use. 
State-machine replication. Since both the leader and the guards receive aggregated sensory information from 
the cloudlets, they need to be in sync with respect to this information. More generally speaking, the  
leader and the guards could provide additional service as part of the control plane. So, they need to 
coordinate their activities and maintain consistent state between them. The fact that the system is 
asynchronous, together with the need for self-stabilization, makes it quite a challenging task. To this 
respect, we have the 
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leader and the guards to run Algorithm 6. 
The algorithm maintains a consistent state (aggregated sensory information) by  performing  multicast 

rounds coordinated by the leader. All necessary  replica information (including  the state)  is maintained  
by each node in array rep[] (line 113), which is exchanged between the leader and the guards (lines 
143–145). In detail, once a cloudlet realizes that it has become the leader (line 130), it proposes to 
install a view of the current members, which includes itself and the guards that according to its local 
failure detector have not fail-stopped. The guards start following the leader towards installing this view 
by adopting its proposal (line 140). Once the leader sees that the view members have adopted its 
proposal (lines 133 and 115), it builds the new state based on the collected messages and states (lines 
136 and 116) and proceeds to install the view. The guards adopt the leader’s rep – including the (new) 
state (lines 139 and 120) completing in this way the installation of the view (lines 135 and 117). 
The multicast rounds can now begin, which are coordinated by the leader (lines 134 and 122–126) and 
followed by the guards (lines 138 and 121). The access to the application’s message queue (commands to 
be executed by the state machine) is done via fetch(), which returns the next multicast message; the 
state transition function apply(state, msg) applies the aggregated input array msg to the replica’s state and 
produces the local side effects. Simply put, in our case, the input to the state machine is the aggregated 
sensory information, which is sent by the cloudlets to the leader and the guards in Algorithm 5 (line 97) 
and stored by the latter in agrregateinfo (line 107). So, essentially the multicast rounds of the state 
machine keep this information consistent among the leader and the guards. At the end of each 
multicast round, the leader updates the sensory information maintained in the shared register data (line 
125). 

In the event of a leader fail-stop, and until the Cloud assigns a new leader (line 51), the guards 
update the data repository (lines 141–141), instead; this ensures a continual update of the sensory 
information (which, depending on the application, could be crucial). If there is a change in the set of 
guards (either due to a fail-stop or due to an update of this set by the Cloud), then the leader begins 
the procedure to install a new view (line 131) with the new membership, without the need of any 
external intervention (including that of the Cloud). The failure detector abstraction (defined in line 
113) can be implemented using heartbeats and counter thresholds (see for example [9]), or using 
―hello‖ messages and timeouts in a more time-informed setting (as we do in our simulation study in 
Section 6). 

Recovering the system state via global reset. Self-stabilization requires bounded space, which includes 
bounded counters.   Counters can grow up to a predefined size MAXINT , e.g., 2

64
   1.   Under normal 

operation, and if say, a counter is incremented every nano-second, then this limit could be reached in 
approx. 146 years. However, a transient violation of the assumptions according to which the system was 
designed to operate can corrupt the counter and cause it reach MAXINT . In such a case (lines 68, 
99, and 144),  the cloudlet or IoT holding this counter will send a RESET message to the Cloud,  calling 
for a global system reset. The Cloud, upon receiving such a message (line 59) or the sequence counter 
reaches MAXINT (line 52), initiates the reset procedure: it sets the shared register info into (line 52 or line 
59), and waits until all non-faulty cloudlets have acknowledged this (via the shared array infoAck , line 
55), before it unregisters all cloudlets and IoT devices (by setting info into ( ,  ,  ,  )) and flashes all its local 
variables. This causes each cloudlet (line 89) to register again after a local reset of the node state and its 
communication channels, following the registration procedure described above. Since the IoTs are no 
longer in info.devices, no cloudlet will contact them, causing each (non-faulty) IoT to timeout and 
hence also register again after a similar initialization procedure (line 64). 

 

5 Correctness Proof 

Our analysis demonstrates a constant time recovery from arbitrary transient  faults.  It  considers  the  in- 
terleaving model  [13], in which the node’s program is a sequence of (atomic) steps.  Each step starts with an 
internal computation and finishes with a single communication operation, i.e., message send or receive. 
The state, si, of node pi ∈ P  includes all of pi ’s variables as well as the set of all incoming 
communication channels.   Note  that  pi ’s  step  can  change  si  as  well  as  remove  a  message  from  
channelj,i  (upon  message arrival) or add a message in channeli,j (when a message is sent). The term system 
state refers to a tuple of 
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Algorithm 3: Code for the self-stabilizing cloud pcloudID. 
42   Variables:  newCloudlet/newIot:  new cloudlets and IoTs and their models (bounded by cloudletSetSize); sequence: leadership 

number; 

43 Shared registers: data: is  a  data structure that  stores  the  sensory  information,  to  be  processed  by  the  cloud 
depending on the application; it includes records of the form (id, leader, round, dat), where id is the cloudlet’s unique 
id that included the context dat in the data structure, at round round of the state machine with leader leader; info: 
has the form of (devices, cloudlets, leader, guards), where the field devices is a set (bounded by deviceSetSize) of IoT 
devices, their models and the information needed for failure detection; cloudlets is  a  set  (bounded  by cloudletSetSize) of 
cloudlets and the information needed for failure detection; leader of the form (seq, id) is the cloudlets’ current leader and 
an associated sequence number; guards is a set of cloudlets ids (a subset of cloudlets) that have been selected as 
guards; infoAck[cloudletSetSize]: an array that stores the latest value of info that each cloudlet has read; 

44 Interface: suspectedIot(set) and suspectedCloudlet(set): return the sets of suspected to be faulty IoT devices and cloudlets, 
respectively; electLeader(set): returns the elected leader from set; selectGuards(set): returns the set of guards from 
set; 

45  do forever /* use predefined periodicity */ begin 

46 let lInfo := (lDevices, lCloudlets, lLeader, lGuards) := read(info); 

47 let lInfoAck := read(infoAck ); 

48 if = lInfo    ( lInfo  =   lInfoAck [k] : k C  suspectedCloudlet(C) ) then 

49 (lDevices, newIot) ((lDevices (k,  ) : k suspectedIot(lDevices)   )    newIot, ); 

50 (lCloudlets, newCloudlet) ((lCloudlets (k,  ) : k suspectedCloudlet(lCloudlets) )    newCloudlet, ); 

51 if lLeader.id lCloudlets then lLeader (sequence++, electLeader(lCloudlets)); 

52 if sequence = MAXINT then write(info,   ); 

53 if (lGuards   lCloudlets) =    then lGuards selectGuards(lCloudlets lLeader.id ); 

54 write(info, (lDevices, lCloudlets, lLeader, lGuards)); 

55 else  if  {⊥, (∅, ∅, ∅, ∅)} ⊇ ({lInfo} ∪ {lInfoAck [k] : k ∈ C \ suspectedCloudlet(C)}) then write(info, (∅, ∅, ∅, ∅)); 
(newCloudlet, newIot, sequence) ← (∅, ∅, 0); 

56 else if {⊥} ⊂ ({lInfo} ∪ {lInfoAck [k] : k ∈ C \ suspectedCloudlet(C)}) then write(info, ⊥); 

57  upon message m = ⟨REGISTER⟩ arrival from IoT j at time t do newIot ← (newIot ∪ {(j, t, ⊥)}); 

58   upon message m = ⟨REGISTER⟩ arrival from cloudlet z at time t do newCloudlet ← (newCloudlet ∪ {(z, t)}); 

   59   upon message m = ⟨RESET⟩ arrival from device k do write(info, ⊥);  

the form c = (s1, s2, · · · , sn) (system configuration), where each si is pi ’s state (including messages in 
transit to pi). An execution (or run) R = c0, a0, c1, a1, . . . is an alternating sequence of system states cx and 
steps ax, such that each cx+1, except c0, is obtained from the preceding one, cx, by the execution of 
step ax.  We say that execution R is legal if it satisfies the task specifications throughout R. We say that 
a system state c is safe if every execution that start from c is legal. Definition 5.1 considers a system state 
that Theorem 5.1 shows to be safe. 

 

Definition 5.1 (Safe system state) We say that the system state c is safe if the following hold. (1) Let pi ∈ C and pj ∈ S, 
such that (j, mj) ∈ myIoT (devicescloudID , cloudletscloudID). It holds that cloudletListj = cloudletList(j, 
cloudletscloudID)∧(lastU pdatej ≤ clockj()). Moreover, devicescloudID = {(k, •) ∈ deviceSeti}∧ ((z, t, •)  ∈ agreegateInfoj

 =⇒ pz ∈ C ∧ t ≤ clocki()) ∧ (j, •, mj) ∈ agreegateInfoj. (2) The value of msgseqi, msgci 
and msgtoioti is greater or equal to any value of msgseq, msgc, and respectively, msgtoiot fields  associated  with  pi  in  messages  
and  cloudlets.   (3)  |A|  =  1,  where  A  =  {(v, su, r, sa, m)  :  pi, pj  ∈ 
C ∧ (v, su, r, sa, m, •) = r ∈ {repi[j], repi,j})}, such that repi,j is a message that was sent in line 143 from pi 
to pj .  Moreover, msgleadercloudID .id[k] = inputk, where pk ∈ leadercloudID ∪ guardscloudID .  (4) No counter has reached 
MAXINT and there are no ⟨RESET⟩ messages. 

We say that an execution is fair if every step that is applicable infinitely often is executed infinitely 
often. Theorem 5.1 demonstrates the required properties for self-stabilization and use the term 
(asynchronous) cycles of a fair execution R. A cycle is the shortest prefix of R in which every non-failing 
node pi performs a completed iteration of node pi ’s do forever loop, all messages that pi sent during that 
iteration were delivered, and all of the iteration’s requests were replied. 

Theorem 5.1 The system’s state is safe within O(1) cycles. 
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Algorithm 4: Code for IoT ioti 
60 Local state: model: a data structure that encodes the recent sensory readings; cloudletModel : recent model received 

from the cloudlet; cloudletList: a list (bounded by cloudletListSize) of dissemination points (ordered by descending 
priority); lastUpdate: time of the last update reception from a cloudlet (according to IoT’s local time); msgseq : a 
positive integer used as a sequence number for messages sent to cloudlets; MSG: a set of (id, seq) pairs that 
stores the highest message sequence received by cloudlet id; 

61 Interface: update(): receives the last sent model and received cloudletModel as well as the time in which that reception 
occurred (lastUpdate). The function then updates model (and returns true) if the cloudlet model requires an 
update due to change in sensory input, a timeout due to a missing acknowledgment from the cloudlet or a 
change in the cloudlet model specifications; 

62 Function: iotInit(): the IoT device first resets all variables dealing with Cloudlet data and control information as 
well as local data and control variables. Then it sends a special message INIT to the Cloud, so that the Cloud 
removes all information about this device from the Cloudlets. Once this is done, the Cloud returns an 
acknowledgment to the device, and the function returns. 

63  do forever /* use predefined periodicity */ begin 

64 if (clock() lastUpdate) > LIMIT then IoT init(); send(cloudID, REGISTER ); 
65 else if update(model, cloudletModel, lastUpdate) then 

66 foreach id ∈ cloudletList do send(id, ⟨msgseq, model⟩); 
67 msgseq ← msgseq + 1 /* if a message was sent */ 

68 if msgseq = MAXINT then send(cloudID, ⟨RESET⟩); 

69   upon m = ⟨seq, list, model⟩ arrival from cloudlet j at time t = clock() begin 

70 if m.seq > MSG|j.seq then 

71 (⟨cloudletList, cloudletModel ⟩, lastUpdate) ← (⟨m.list, m.model⟩, t); 

72 MSG ← (MSG \ {(k, •) : k ∈/ cloudletList  ∨ k = j}) ∪ (j, m.seq); 

73 send(j, ⟨MSG|j.seq⟩); 

   74   upon message m = ⟨seq⟩ arrival from cloudlet z do msgseq ← max{m.seq, msgseq};  

Proof. The proof considers the predicate pred = {⊥} /= ({info}∪{infoAck [k] : k ∈ C\suspectedCloudletcloudID(C)}). 
We start by considering an execution in which pred holds throughout R, and thus pcloudID does not 
executes lines 55 and 56. Under this assumption, we show that items 1 to 4 of Definition 5.1 hold 
within (1) cycles. As a completely case, we consider a starting system state in which pred does not hold, 
and show that, within O(1) cycles, the pred holds. 

Item 1.  Let (pi, pj) ∈ C ×S.  Within O(1) cycles, the cloud pcloudID updates the devices and cloudlets fields 

in info (line 54). Within O(1) cycles, pi reads devices and cloudlets (line 88) and send ⟨•, cloudletList(j, lCloudlets), m⟩ 
to IoT pj (line 96), such that (j, mj) ∈ myIoT (devicescloudID , cloudletscloudID).  When that message arrives, pj 
stores it in cloudletListj and cloudletModel j as well as updates lastU pdatej with the arrival time (line 71). 
Thus, cloudletListi = cloudletList(i, cloudletscloudID) ∧ (lastUpdatei ≤ clocki()). Lines 92 and 102 implies 
devicescloudID  = {(k, •) ∈ deviceSetj} and  line  107  implies  ((z, t, •) ∈ agreegateInfoj    =⇒   pz  ∈ C ∧ t ≤ 
clocki()) ∧ (j, •, mj) ∈ agreegateInfoj . 

Item  2.      Suppose  that  in  R’s  starting  state,  Item  3  does  not  hold  with  respect  to  a  pi ’s  field.   Within 
O(1) cycles,  any message containing msgseq ,  msgtoiot or msgc arrive to its destination pj .  Thus,  for the 
sake of a simple presentation, we focus on the case in which Item 3 does not hold in node pj with 
respect to a field that is associated with node pi.  We observe that within     (1) cycles, pi and pj  
complete a message round-trip that include this filed. In detail, these message are sent in lines 66, 
96 and 97 and received in lines 74, 110 and 111, respectively.  Note that whenever pi receives any such 
message, pi updates the local value with the received one, in case the latter is greater than the former. 

Item 3. Within (1) cycles, leader and guards are set by pcloudID (line 54) and all cloudlets read these values 
(line 88). We show that if a new leader has been put in place (or the view has become inconsistent), 
the leader installs a new view which includes itself and the guards. For this purpose, it first proposes 
this view (line 136), which it is accepted by the guards (line 140) within (1) cycles. Then, within (1) cycles 
it updates rep[] and installs this view (lines 135 and 139), in which the guards have updated their rep[]s 
based on the one of the leader. After that the leader resumes the round-base updates for 
maintaining the state among itself and the guards (lines 134, 138, and 122–126), hence stabilizing the 
state machine replication. Moreover, it aggregates inputk : pk ∈ leadercloudID ∪ guardscloudID, such as 
msgleadercloudID.id[k] = inputk. 
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Algorithm 5: Code for cloudlet pi 

75  Local state: deviceSet: a set (bounded by deviceSetSize) of IoT devices and their most recently received models; 

76  agreegateInfo: a set of data structures encoding aggregated sensory information; 

77  msgc: a positive integer used for ordering message sent to the leader and guards; 

78 msgtoiot: a positive integer used for ordering messages sent to IoT devices; 

79  MSGc: a set of (id, seq) pairs that stores the highest message sequence received by cloudlet id; 

80  MSGSEQ : a set of (id, seq) pairs that stores the highest message sequence received by IoT id; 

81 Shared registers: info and infoAck: as in Algorithm 3; 

82  Interface: aggregate(deviceSet): returns the aggregated sensory information; 

83  cloudletList(k, set): for a given IoT device iotk and a set of cloudlets, this function returns the cloudlet list that iotk 

should use (prioritized in an descending order); 

84  myIoT (): projection of the IoTs that are within the cloudlet’s responsibility; 

85  cloudID: the address of the Cloud; 

86 Function: cloudletInit(): the cloudlet first resets all variables dealing with the data and control information of 
cloudlets and IoT devices as well as its local data and control variables. Then it broadcasts a special message 
INIT to all other cloudlets, and to the Cloud so that the other cloudlets remove all information about this 
cloudlet; the Cloud removes all relevant information about this cloudlet from the IoT devices. Once the 
cloudlet receives acknowledgments from all the cloudlets and the Cloud, the function returns. 

87  do forever /* use predefined periodicity */ begin 

88 let lInfo := (lDevices, lCloudlets, lLeader, lGuards) := read(info); write(infoAck [i], lInfo); 

89 if lInfo = i / lCloudlets then   cloudletInit(); send(cloudID, REGISTER )) ; 

90 else if lInfo = then 

91 if i / (lGuards lLeader.id ) then (agreegateInfo, MSGc) ( ,  ); 

92 deviceSet (deviceSet (k,  ) : k / lDevices ); 

93 MSGSEQ (MSGSEQ (k,  ) : k / deviceSet ); 

94 MSGc (MSGc (k,  ) : k / lCloudlets ); 

95 let (iotAdd, msgAdd) := (0, 0); 

96 foreach (j, m) ∈ myIoT (lDevices, lCloudlets) do {send(j, ⟨msgtoiot, cloudletList(j, lCloudlets), m⟩); 
iotAdd ← 1}; 

97 foreach j ∈ lGuards ∪ {lLeader.id} do {send(j, ⟨msgc, aggregate()⟩); msgAdd ← 1}; 

98 (msgtoiot, msgc) ← (msgtoiot + iotAdd, msgc + msgAdd); 

99 if  MAXINT ∈ {msgc, msgtoiot} then send(cloudID, ⟨RESET⟩); 

100   upon message m = ⟨seq, model⟩ arrival from IoT j at time t begin 

101 if m.seq > MSGSEQ |j.seq then 

102 deviceSet ← (deviceSet \ {(j, •)}) ∪ {(j, t, m)}; 

103 MSGSEQ ← (MSGSEQ \ {(j, •)}) ∪ (j, m.seq); 

104 send(j, ⟨MSGSEQ |j.seq⟩); 

105   upon message m = ⟨seq, aggregated⟩ arrival from cloudlet z at time t begin 

106 if i ∈ lGuards ∪ {lLeader.id} ∧ m.seq > MSGc|z.seq then 

107 agreegateInfo ← (agreegateInfo \ {(z, •)}) ∪ {(z, t, m)}; 

108 MSGc ← (MSGc \ {(z, •)}) ∪ (z, m.seq); 

109 send(z, ⟨MSGc|z.seq⟩); 

110   upon message m = ⟨seq⟩ arrival from IoT k do msgtoiot ← max{m.seq, msgtoiot} 

111  upon message m = ⟨seq⟩ arrival from cloudlet z do  msgc ← max{m.seq, msgc}  

Item 4.    Suppose that in R’s starting state, Item 3 does not hold at node pi.  We observe that within 
O(1) cycles, either Item 3 holds and Item 4 does not hold, or both hold. Moreover, within O(1) 
additional cycles, RESET arrives to pcloudID and the assumption above does not hold (line 59). Thus, 
the rest of the proof considers complementary case. 

For the case that is competently to the assumption that appears in the proof start, suppose, 
towards a  contradiction,  that  pred does  not  hold  in  R’s  starting  state.   Moreover,  suppose  that  any  
prefix  R

′
  of R = R

′
 R

′′
 that has (1) cycles, does not have a matching suffix R

′′
 during which the 

predicate pred holds. Since pred does not hold during R
′
, pcloudID does not executes lines 49 to 54 during 

R
′
. Therefore, it must executes either line 55 or 56 for a constant number of times during R

′
. 

Suppose that pcloudID does not execute line 55 during R
′
. Thus, within (1) cycles, pcloudID executes 

repeatedly line 56 until the if-statement condition of line 55 holds. Then, the if-statement condition of 
line 56 
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Algorithm 6: Self-stabilizing replication for guards and leader, code for cloudlet pi 
112 Interfaces: fetch() next multicast message, apply(state, msg) applies the step msg to state (while producing side effects), 

synchState(replica) returns a replica consolidated state, synchMsgs(replica) returns a consolidated array of last 
delivered messages, failureDetector() returns a vector of processor ids, cloudID returns the address of the Cloud; 

113   Variables: rep[] =   view = ID, set , status Propose, Install, Multicast , (multicast round number) rnd, (replica) 

state, (last delivered messages) msg[n] (to the state machine), (last fetched) input (to the state machine), propV 
= ⟨ID, set⟩, (recently live and connected component) FD⟩: an array of the state machine’s replica, where rep[i] refers 
to the one that processor pi maintains, and rep[j] refers to the last arriving message from pj  containing pj ’s 
rep[j]. FD stores the failureDetector() output, i.e., the set of processors that the failure detector considers as 
active. myLeader stores the id of the local leader; if none. The view.ID (and propV.ID) is composed by the id 
and leader sequence installing the view, and counter cnt, in case the same leader installs a new view; 

114 Shared registers: info and data: as in Algorithm 3; 

115   Macros:  roundP roceedReady() = {(∀pj ∈ view.set:  rep[j].(view, 

status, rnd) = (view, status, rnd)) ∨ ((status /= Multicast) ∧ [(∀pj  ∈ propV.set : rep[j].(propV, status) = (propV, 

Propose)) ∨ (∀pj ∈ propV.set : rep[j].(propV, status) = (propV, Install))]}; 

116    coordinateP ropose() = {(state, msg, status) ← (synchState(rep), synchMsgs(rep), install}; 

117   coordinateInstall() = {(view, status, rnd) ← (propV, Multicast, 0)}; 

118   roundReadyT oF ollow() = {rep[myLeader].rnd = 0 ∨ rnd < rep[myLeader].rnd ∨ rep[myLeader].(view /= propV )}; 

119    followPropose() = {(status, propV )←rep[myLeader](status, propV )}; 

120  followInstall() = {rep[i] ← rep[myLeader]}; 

121    followMcastRnd() {rep[i] ← rep[myLeader]; apply(state, rep[myLeader].msg); input ← fetch();} 

122 procedure coordinateMcastRnd() do begin 

123 apply(state, msg); input ← fetch(); 

124 foreach pj C do if  pj view.set then  msg[j] rep[j].input else  msg[j] ; 

125 write(data, (i, lLeader, rnd, rep[i].state)); 

126 rnd ← rnd + 1; if rnd = MAXINT then view.set ← ⊥ /* Forces a view change in line 131/; 

127    do forever /* use predefined periodicity */ begin 

128 FD failureDetector(); 

129 let (lDevices, lCloudlets, lLeader, lGuards) := read(info); 

130 if lLeader.id = i    myLeader = i then (status, propV , myLeader) (Propose, (lLeader, cnt = 0), FD 

(lGuards i ) , i); 

131 if lLeader.id = i   myLeader = i   ((status = Multicast    view.set = S))    (status = Multicast    propV.set = S))) 

then (status, propV, myLeader) (Propose,   (lLeader, cnt++), S) , i), where S := FD   (lGuards i ; 

132 if k = i   i lGuards  k FD, where k = lLeader.id then (myLeader, status) (k, rep[k].status); 

133 if lLeader.id = i    roundP roceedReady() then 

134 if status = Multicast then coordinateMcastRnd(); 

135 else if status = Install then coordinateInstall(); 

136 else if status = Propose then coordinateP ropose(); 

137 else if lLeader.id = i   i lGuards  lLeader.id FD   roundReadyT oF ollow() then 

138 if status = Multicast then followMcastRnd(); 

139 else if status = Install then followInstall(); 

140 else if status = Propose then followPropose(); 

141 if  lLeader .id /= i ∧ i ∈ lGuards ∧ lLeader .id ∈/ F D then 

myLeader ← ⊥; write(data, (i, lLeader, rnd, rep[i].state)); 

142 else if myLeader /= ⊥ then send rep[i] to myLeader; 

143 if lLeader.id = i then ∀k ∈ lGuards ∩ FD send ⟨rep[i]⟩ to pk; 

144 if  cnt = MAXINT then send(cloudID, ⟨RESET⟩); 

145     upon  message m arrival  from pj  do rep[j] ← m;  

does not hold again during R, and, within O(1) cycles, the if-statement condition of line 48 holds.  
Thus, the system reaches R

′′
 within O(1) cycles. □ 

6 Evaluation 

The previous section details the correctness proof of our self-stabilizing algorithmic process which, in 
contrast to the current state-of-the-art, shows that even in the presence of failures a fog ecosystem can always recover in 
constant time and compute analytic insights from IoT data. 
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Figure 5: High-Level Overview of the Bus Network Topology 
This section introduces a comprehensive evaluation of the effectiveness and runtime  overhead  of  our 

framework. First, we measure information delay that is the time interval required for  IoT  data  to  be 
propagated in the network for analytics  to  be  correctly  derived  in  the  presence  of  multiple  and  different 
failures (e.g., cloudlet fail-stop, communication link drops). Second, we measure the additional  runtime 
footprint that  our  framework  incurs  to  exemplary  state-of-the-art  distributed  control  planes  (e.g.,  istio). 
This provides a detailed overview of what is the cost, in terms of network overhead, of maintaining 
data freshness and analytic computation correctness in the presence of failures. Results show that with our self-
stabilizing framework, control planes are able to compute analytics correctly with the information delay 

maintained relatively stable despite of the presence of failures, while the network overhead scales linearly towards the IoT 
load, as required by O1-O4 (Section 3). 

For the experimentation, we introduce a real-world use-case of a smart city Bus Network Service 
(BNS) evaluated under various execution scenarios. We opt to focus on experiments that use a publicly 
available and real-world workload to truly reveal the strengths of our framework and its ability to deal 
with high workload. Specifically, the workload originates from the Dublin smart city Bus Network 
Service [2], comprised of 40GB of compressed data, tracking for 1 month the bus routes of 968 buses 
(Jan. 2013). Each bus is equipped with a GPS tracking device recording every 1s location coordinates 
and the current bus route delay. Figure 5 depicts a high-level overview of the BNS topology, where 16 
cloudlets are deployed across Dublin’s major city regions, denoted for clarity as Ax, to decentralize the 
BNS and increase the system responsiveness. We note that a bus route may span across different city 
regions and a bus can be connected to multiple cloudlets depending on the cloudlet coverage. Each 
cloudlet serves as an analytics engine that aggregates local bus updates and propagates an alert to 
traffic operators (central cloud service) when 10 or more buses in a city area are reporting, in a 5min 
sliding window, delays over one standard deviation from the previous weekly mean. 

To experiment with large-scale deployments and ensure both result reproducability and algorithm 
adop- tion, we have designed a simulation testbed inspired by Kompics [6], an open-source 
distributed systems message-passing component model, and extended the entity behavior model to 
facilitate fault models over a 
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control plane in fog computing ecosystems
2
. The testbed is run in an Openstack private cloud on a server 

configured with 16VCPU clocked at 2.66GHz, 16GB RAM and 260GB disk. The network configuration 
between testbed entities adopts a gaussian kernel with the following mean values: (i) Cloudlet-to-
Cloud latency 100ms; (ii) IoT-to-Cloud latency 250ms; (iii) intra-region Cloudlet-to-Cloudlet latency 
10ms; (iv) inter-region Cloudlet-to-Cloudlet latency 100ms; and (v) IoT-to-Cloudlet latency 20ms. We 
opt for these specific capabilities so that the testbed resembles an actual geo-distributed fog deployment 
over a city envi- ronment. All simulation scenarios are run 100 times with cloudlets and IoT devices 
starting at randomized time intervals. For the IoT device placement, we have implemented the 
registration interface of Algorithm 2 so that when an IoT device (e.g., a bus) requests to join the network, 
the central authority (e.g., the cloud) responds with a list of valid cloudlets that are the ―closest‖ to the 
device in the device’s operating (city) region. The same strategy will hold for when the device has 
changed it’s operating region (e.g., bus moves from A1 to A2). Finally, the selection of the leader and 
the guards was done randomly, since our cloudlets are homogeneous. 

For the widespread experimentation of different fault scenarios over the testbed, we adopt the 
Netflix Chaos Monkey framework [1]. This enables the configuration and (random) selection of faults and 
entities to infest at given time intervals, or at random, depending on the evaluation scenario. Unless 
otherwise stated, the aforementioned topology and network configuration will be considered as the baseline 
configuration. 

 

 Information Delay 

In this set of experiments, we show the effect of different failures to the timeliness of analytic 
computation. We consider four experiment runs with faults injected at random and examine how 
information delay is affected by: 

- randomly failing a different number of regular cloudlets; 

- failing the guards; 

- failing the leader; 

- randomly dropping the communication link between IoT devices and cloudlets. 

Figure 6 depicts the information delay as the number of concurrently failing  cloudlets  increases.  In  this 
box-plot the median information delay is denoted by the line in the box, while the box length extends 

between the first and third quantile with outliers depicted as independent points. With zero cloudlets 
we denote the information delay  in  normal  operation  (without  failures).  From  Figure  6,  we  observe  that  

information  delay is not affected, despite slight deviations,  while the number of failing cloudlets 
remains under 7. After this, randomly selecting concurrent cloudlets hinders the extreme case of wiping 

out all cloudlets of a city region. This results in added delay  as  IoT  data  for  the  specific  region  must  
be  directly  propagated  to  the  cloud. For this experiment run, system recovery is only required when an 

IoT device is left with no cloudlet in its coverage. In this extreme case, the IoT device must contact 
the cloud to validate the registration. However, the involvement of the cloud naturally hinders a 

communication overhead. Thus, despite information delays for extreme cases of concurrent cloudlet failures, analytic 
computation is correct at all times while the system recovers from faults in a bounded number of communication rounds, as 

required by O1 and O3 (Section 3). Figure 7 depicts  how  information  delay  is  affected  by  the  failure  of  the  
control  plane  guards  and leader when the baseline deployment is configured with two guards. We observe 

that the timeliness of analytics computation is neither affected by the failure of the leader or the guards. 
This concurs with the correctness proof that shows that, the self-stabilizing fog ecosystem can return back to a 

legal state within (1) time, 

which is sufficient to propagate information without delay, as required by O4 (Section 3). 
The next experiment run studies how information delay is affected by the temporary drop of the 

network link between IoT devices and cloudlets. To achieve this, we artificially block for a 

predefined interval the 
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Figure 6: Information delay vs number of concurrent cloudlet failures 
link between affected IoTs and cloudlets in each region,  thus maintaining only the link with the cloud.  In 
Figure 8 we observe that the information delay increases as more devices experience a link drop. This 
occurs because the affected IoTs detect the link absence and, thus, must communicate with the cloud 
for updates which takes more time. Still, analytics are computed without corrupted or missing IoT data. This 
extreme case, of failing all the communication links among IoT and cloudlets, highlights the importance of 
having a sufficient amount of cloudlets in each region to cope with concurrent link failures. 

 

 Runtime Footprint 

In this set of experiments, we provide an analysis depicting the network overhead of different 
components comprising our framework and the experiment testbed. Figure 9 depicts the network 
traffic over the data and control plane for a simulation run of the baseline configuration when random 
failures of the cloudlets’ leader, guards, and cloudlets are introduced. The figure depicts the network 
overhead for 5min where the 30s bootstrap period is omitted. First, we observe four distinct segments 
(separated by vertical lines). During each segment our framework maintains a stable message 
exchange rate for both planes, with the data plane traffic approximately x3.5 higher than the control 
plane traffic. In the first segment (30s to 75s) the system exhibits no faults. At the 75th second, the 
leader fails and we observe a slight drop in both the control plane traffic (from 950KB/s to 850KB/s) 
and the data plane (from 3300KB/s to 3100KB/s). When the cloud discovers the leader failure, it 
elects a new leader at the 88th second and the system recovers back to a legal state, with a slight 
increase of the control plane traffic (900KB/s). Next, at the 150th second the two guards  fail and the 
control plane traffic falls to 700KB/s while the data plane traffic falls to 2600KB/s. As before,  the 
cloud elects two new guards and the control plane traffic stabilizes at 750KB/s. Finally, at the 225th 
second (4th segment) three cloudlets fail and both control and data traffic drop to 550KB/s and 
2100KB/s, respectively. These results show that a constant number of messages is exchanged, 
validating the objectives O1 and O3 (Section 3). 

Next, we show that the control and data plane network traffic scales linearly towards the number 
of different system entities, as required by O2. Table 1 shows the results of different configurations in 
percentage increments from the baseline. 
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Figure 7: Information delay vs number of concurrent guard and leader failures 
Guards. We observe that the overhead of adding guards increases linearly. Specifically, each 
additional guard adds an overhead in the range of 4.75 5.68% for the control plane traffic and 4.82 5.02% 
for the data plane traffic. It is worth pointing out that the previous experiment in Figure 7 showed that 
even with all the guards failing concurrently, the information latency remains stable, and therefore, 
for the studied baseline configuration, having two guards balances well the trade-off between 
overhead and information delay. 
Cloudlets. The overhead of adding extra cloudlets, for redundancy purposes, scales linearly while the IoT 
load remains stable.  Specifically, each additional cloudlet adds an overhead in the range of 7 .96    9.03% 
for the control plane, and for the data plane the increment is approximately 6.2%. Obviously, the trade-off 
is straightforward. Increasing the cloudlets, decreases the probability of delaying information 
propagation for a city region, e.g., as in the case of Figure 6 after 7 cloudlets, at the cost of higher 
network traffic. 
IoTs. By increasing the workload (IoT devices), again, the network overhead is linearly increased. 
Each additional IoT device adds a 0.094% overhead on the control plane traffic, while for the data 
plane the incre- ment ranges between 0.085 0.087%. This increase is attributed to the fact that each 
cloudlet communicates with more IoT devices. 

 

7 Conclusions 

In this paper we introduced a fault-tolerant framework for distributed control planes that enables fog 
services to cope with a very broad fault model. To this end, we presented self-stabilizing algorithms 
that guarantee automatic recovery within a constant number of communication rounds without the 
need for external (hu- man) intervention. Using real-world data and actual queries of interest from an 
intelligent transportation service, we demonstrate the performance gains of our framework, and thus the 
promise of self-stabilization in fog computing. Our results show that despite information delays for 
extreme cases of concurrent cloudlet fail- ures, analytic computation is correct, while the network 
overhead is proportional to the number of cloudlets, guards, and devices. We believe that our self-
stabilizing framework is applicable to a wide range of fog services requiring strong fault-tolerance 
guarantees. 
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Figure 8: Information delay vs concurrent fail-stop IoT-Cloudlet network links 
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