
International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 47, Issue 04) and (Publishing Date: 10
th

 December, 2018)

(An Indexed, Referred and Impact Factor Journal)

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com
209

A Self-stabilizing Control Plane for the Edge and Fog Ecosystems

Jnana Ranjan Sahoo1, Swaha Pattnaik2, Sulochana Nanda3, Suchismita Satpathy4

1Department of Electronics & Communication Engineering, Raajdhani Engineering College, Bhubaneswar, Odisha

2Department of Electronics & Communication Engineering, NM Institute Engineering & Technology, Bhubaneswar, Odisha
3Department of Electronics & Communication Engineering, Capital Engineering College, Bhubaneswar, Odisha

4Department of Electronics & Communication Engineering, Aryan Institute of Engineering and Technology, Bhubaneswar, Odisha

Abstract

Fog Computing is now emerging as the dominating paradigm bridging the compute and
connectivity gap between sensing devices (a.k.a. ―things‖) and latency-sensitive services. However, as
fog deployments scale by accumulating numerous devices interconnected over highly dynamic and
volatile network fabrics, the need for self-configuration and self-healing in the presence of
failures is more evident now than ever. Using the prevailing methodology of self-stabilization, we
propose a fault-tolerant framework for distributed control planes that enables fog services to cope
and recover from a very broad fault model. Specifically, our model considers network uncertainties,
packet drops, node fail-stop failures and violations of the assumptions according to which the system
was designed to operate, such as an arbitrary corruption of the system state. Our self-stabilizing
algorithms guarantee automatic recovery within a constant number of communication rounds
without the need for external (human) intervention. To showcase the framework’s effectiveness, the
correctness proof of the proposed self-stabilizing algorithmic process is accompanied by a
comprehensive evaluation featuring an open and reproducible testbed utilizing real- world data from
the intelligent transportation domain. Results show that our framework ensures a fog ecosystem
recovery from faults in constant time, analytics are computed correctly, while the overhead to the
system’s control plane scales linearly towards the IoT load.

1 Introduction

Fog and Edge Computing are the technologies enabling computation at the network extremes, such
as on downstream data, on behalf of cloud services, and upstream data, on behalf of IoT services
[21]. The rationale of fog computing is that computing should happen at the proximity of the data
source with the ―fog‖ constituting any compute and network resources along the path between the data
and the cloud. In this context, the ―edge‖ differs from traditional sensing devices in that sensory data
are processed in proximity and converted from raw signals to contextually relevant information [26].

In light of this, recent advancements in fog computing suggest using cloudlets as intermediate
compute platforms between IoT devices (edge devices) and the cloud which allow users to exploit the
analytic power of the cloud without incurring the high latency in communicating with remote clouds [8].
A cloudlet (also referred as a foglet, gateway, microcloud) can be a single server or a small cluster of co-
located servers that form a (virtual) pool of shared resources but from an external viewpoint are
considered a single entity [17]. Compared to traditional datacenters, a cloudlet features much more
limited resources, albeit its proximity to IoT devices makes it appealing for offloading compute tasks
and receiving timely responses.

Although fog computing brings the computation closer to delay-sensitive services, the challenges
re- stricting the cloud paradigm still remain as the pace of generated data continues to rise [25].

Now, these

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 47, Issue 04) and (Publishing Date: 10
th

 December, 2018)

(An Indexed, Referred and Impact Factor Journal)

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com
210

overwhelming volumes of data not only have to be processed in time, but must be processed on, arguably,
―weaker‖ hardware with potential nodes being vehicles, sensors, wifi access points, drones, cameras, and
even wearable devices. Also, fog infrastructure usually operates in geo-distributed and less controlled
environ- ments, with many applications competing for limited resources against high-priority services
(e.g., 5G) [24]. Consequently, failures due to hardware limitations and network uncertainties are highly
likely at the fog continuum spanning between users, things, and clouds [5]. To maintain high availability,
fog infrastructure must be resilient to both node and network failures. Thus, self-managing and self-
healing solutions are required for fog ecosystems. IoT services must be able to recover from any issues
that arise during their lifetime. In this context, it is critical to ensure continuous operation and
recoverability at scale even in the event of failure without human involvement. In particular, cloudlets
must satisfy the increasingly stringent fault-tolerance specifications of today’s internet-enabled systems.
In the current fog computing paradigm, fault-tolerance must be implemented to both preserve the system
state locally at the edge and ensure the accuracy of analytics computations, especially in the case of a
node failure or intermittent long-distance network connectivity problems.

We propose to address the challenge of dependable fog computing by using a fault-tolerant control
plane that ensures service availability and data freshness in spite of the dynamic nature of the fog
continuum. Via inter-connection of IoTs (edge devices), cloudlets and remote clouds, the proposed
solution can tolerate network uncertainties, communication drops as well as cloudlet and IoT failures. In
addition to these benign failures, our algorithms follow a very strong notion of fault-tolerance, called self-
stabilization [13], which has provided the Internet with automatic failure recovery as early as the 1980’s
[19]. Self-stabilization ensures that the fog can recover after the occurrence of any temporary
violations to the assumptions according to which the system was designed to operate. These violations
can include, for example, state corruption, extreme number of node failures, network partitions or
unexpected system reconfiguration. Once such transient violations occur, non-self-stabilizing systems
cannot guarantee correct system behavior due to data loss or the propagation of corrupted information.
The correctness proof of a self-stabilizing system is required to guarantee recovery, within finite time,
after the occurrence of the last transient violation.

Contribution and Research Outcome. This paper addresses the problem of how to tolerate and recover
from run-time faults in distributed fog computing ecosystems. We consider a typical fog computing
architecture, where edge devices are interconnected with remote clouds via network elements, denoted as
cloudlets. Specifically:

- We introduce a self-stabilization framework for distributed control planes. The control plane is the
core of the ecosystem and manages the network fabric with a global viewpoint and establishes the
routing path of data serviced by geo-distributed cloudlets. To the best of our knowledge, we are the
first to introduce a self-stabilizing framework for control planes enabled over fog and edge
ecosystems [18].

- To deal with a broad fault model that includes both communication and node failures, our correctness
proof details how the proposed self-stabilizing solution can recover within a constant number of
communication rounds, after the occurrence of transient faults, as required by [12].

- To illustrate both the effectiveness and low runtime footprint of our framework at scale, we
introduce a thorough evaluation using real-world data and actual queries of interest from an
intelligent transportation service. Our results are reproducible and the reference implementation
(including configuration and test data) is open-source and available online

1
. Our experiments

validate our analysis and show that even in the presence of severe failures, our solution can always
recover in constant time while the network overhead scales linearly towards the IoT load.

Paper organization. Section 2 reviews related research. Section 3 presents the system model and objec-
tives before proposing the solution for realizing the system in Section 4. Section 5 presents the
correctness proof. Section 6 presents the experimentation, followed by the conclusion.

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 47, Issue 04) and (Publishing Date: 10
th

 December, 2018)

(An Indexed, Referred and Impact Factor Journal)

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com
211

 Frequency

Duration Rare Not rare

Transient
Any violation of the assumptions
according to which the system
operates (as long as the code stays
intact).
This can result in any state
corruption.

Packet failures:
omissions, duplications,
reordering (assuming
communication
fairness holds).

Permanent Fail-stop failures.

Need fair execution, i.e., consider only packet failures Consider all benign faults

Figure 1: Table details the fault model and the chart illustrates when each fault set is relevant. The chart’s gray shapes
represent the system execution, and the white boxes specify the failures considered to be possible at different
execution parts and recovery guarantees of the proposed self-stabilizing algorithm. The set of benign faults includes both
packet failures and fail-stop failures.

2 Related Work

Fog and edge infrastructures are typically composed by hundreds of thousands to millions of
heterogeneous and interacting components, which lead to the emergence of different types of faults. A
major challenge in fog and edge computing is to define the fault and failure coverage required to
provide high QoS [16]. Faults may occur either simultaneously or in any aspect of system operations
ranging from application to hardware, and may have several causes, including insufficient memory,
performance interference, system utilization, network congestion, server faults, application crashes,
etc. Due to these challenges, existing work on fault- tolerance in large-scale distributed systems often
have limitations in terms of practicality and performance guarantee. In [16], authors introduce
CESSNA, a framework that provides consistency guarantees for stateful edge applications. CESSNA
uses the Fault-Tolerant MiddleBox [20], which adopts the classical approach of ―rollback recovery‖
where a system uses information logged during normal operation to correctly reconstruct state after a
failure. In [27], authors present a fault-tolerant messaging architecture for edge systems. The fault-
tolerance is achieved by introducing timing bounds that capture the relation between service
parameters and loss-tolerance requirements. In [28], a fault-tolerant framework for data transmission
in fog computing is introduced. The proposed fault-tolerance mechanism combines the advantages of
Directed Diffusion and Limited Flooding to enhance the reliability of data transmission. We note that
none of these solutions provides a holistic approach for addressing the fault-tolerance in edge and
fog ecosystems.

Our framework fits naturally in distributed control planes, such as Istio and Linkerd [3, 4], that
decouple operational control, policy enforcement and behavior telemetry from the business logic of
distributed network fabrics and microservices. These frameworks provide fault-tolerance in the form
of timeouts and (number of) retries for labelling nodes servicing HTTP requests as failed. In turn,
circuit breaking is provided to safe-guard nodes overwhelmed by requests so that nodes ―fail fast‖ when
requests exceed the denoted limit. Thanks to our self-stabilizing algorithmic process, distributed
control planes are introduced to a very strong notion of fault-tolerance on network uncertainties,
communication drops, configuration errors, arbitrary transient violations, cloudlet and IoT fail-stop
failures. In turn, no combination of faults can yield the system execution or corrupt data
computations.

In the context of self-stabilizing algorithms and IoT, Siegemund et al. [22] present a self-stabilizing
pub- lish/subscribe middleware for IoT applications. Their basic idea is that fault-tolerance is
ensured through the construction of a distributed self-stabilizing data structure based on a virtual ring.
However, operations over this ring take (n) time even in the absence of failures, where n is the ring size.
Canini et al. [10] present a self-stabilizing distributed control plane for software-defined networks (SDNs).
Their work assumes that all nodes are either client hosts, switches or controllers. The algorithm
stabilizes within O(d

2
n), where d is the

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 47, Issue 04) and (Publishing Date: 10
th

 December, 2018)

(An Indexed, Referred and Impact Factor Journal)

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com
212

network diameter and n is the number of nodes. Chattopadhyay et al. [11] integrate an SDN control plane
with the in-network processing infrastructure that can offload IoT services. They use a single centralized
ser- vice deployment controller and lightweight SDN micro-controllers (µC). They mention that their
algorithm for µC placement is self-stabilized with a linear convergence time (but no formal proof is
provided). We provide both analytical and empirical proof for convergence in constant time. The state-
machine replication technique used in this paper is inspired by practically-self-stabilizing virtual
synchrony [14]. However, the proposed self-stabilizing solution has a much easier to understand
leader election mechanism than the one in [14]. Moreover, our self-stabilizing solution stabilizes in
constant time whereas the one in [14] does not have a bounded stabilization time (by the definition of
the solution criteria of practically-self-stabilizing systems).

While interesting and relevant, the above works do not address the impact of strong fault-
tolerance in a hierarchical network organization that includes cloud infrastructure, cloudlets that are
placed at the network edge and IoT devices. Our recovery time is within (1) and our placement

mechanism convergence is within (1). We base our proofs on the definition of self-stabilizing systems
[13]. The definition requires the entire system to use bounded memory and recover after the occurrence
of any transient violation of the assumptions according to which the system was design to operate. To

the best of our knowledge, this is the first work

that introduces a self-stabilizing control plane for the edge and fog ecosystems.

3 The System

Informatics is a science of abstractions, and a main difficulty consists in providing users with a
―desired level of abstraction and generality — one that is broad enough to encompass interesting
new situations, yet specific enough to address the crucial issues‖ [15]. This work provides a model
that has the right-level of abstraction for the case edge computing since it allows both analytical and
experimental study of the problem. We consider a fog computing system comprised of sets of nodes,
such as the one of cloudlets C and IoT devices S, as well as a remote cloud infrastructure, which we refer
to as the Cloud. Each cloudlet features specified communication, computation, and storage capabilities.
Each cloudlet is associated with a wireless access point covering a local area, referred to as a cell. The
cloudlets in C form a shared resource pool that can serve the system collaboratively, e.g., aggregating
IoT data and forwarding it to the Cloud. We assume that the cloudlets can share (over the Internet)
such aggregated data with the Cloud by accessing a shared repository. The Cloud can use the
repository to instruct cloudlets, e.g., which queries the IoTs need to serve (edge devices), or provide
advice the cloudlets on how to organize themselves, e.g., propose the most-suitable leader according to
the cloudlet specified capabilities and statistics gathered by the Cloud. The cloudlets themselves are
intra-connected by backhaul links. We assume that, in the absence of failures, the quality of service of
these links allow to send data and control messages in a timely manner — this is in contrast to the
communications between the cloudlets and the Cloud, which we assume to be asynchronous by
nature. The control plane manages and configures the cloudlets to route traffic and enforce service
placement with IoT devices.

Objectives. We aim at developing a fault-tolerant framework for distributed control planes that
enables large-scale fog services to cope well with communication uncertainties and a broad fault model
without service downtime or the need for external (human) intervention. Next, we discuss the
development objectives of the proposed self-stabilizing solution before specifying the system
requirements.

- O1. The Cloud, cloudlets and IoTs (edge devices) should be able to exchange messages within a
constant number of messages and communication rounds per information update.

- O2. The memory space and compute time of any system entity must always be bounded and
network traffic scale linearly to the number of system entities.

- O3. The presence of a constant number of benign faults (Figure 1) must not degrade the system
perfor- mance beyond the bounds that are imposed by the system communication and processing
delays. I.e.,

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 47, Issue 04) and (Publishing Date: 10
th

 December, 2018)

(An Indexed, Referred and Impact Factor Journal)

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com
213

Figure 2: System overview

Figure 3: The leader-based architecture

objective O1 must not be violated in the presence of benign faults (and the absence of violations
considered in objective O4).

- O4. We also consider arbitrary transient violations of the assumptions according to which the
system was designed to operate (as long as the algorithm code stays intact). After the occurrence of
these violations, the system must recover autonomously within a constant number of
communication rounds and return to satisfy the task specifications. By autonomous we mean the
absence of external intervention (of a human or a system component that is not part of the proposed
framework).

Specifications. The control plane for the edge organizes the cloudlet layer (Figure 2), such that in the
presence of communication and node failures cannot disrupt the execution of services, such as IoT
queries. In detail, we require the implementation of the following functionality:

(i) The cloudlet and IoT registration allows the Cloud to include individual nodes in the system (Figure
2). A node is allowed, after a predefined delay and local cleanups, to register again when it
notices that it became disconnected from the system due to failures. Note that the latter case is rare,
and thus, it should not repeatedly consume significant system resources.

(ii) The query functionality allows the Cloud to request the flow of information according to a model
that the IoTs (edge devices) are to update periodically. That is, given the Cloud’s current belief about the
query result, the specified IoTs (edge devices) will update the system whenever the collected sensory
information deviates from the model. The cloudlet aim here is to aggregate these updates so that a concise
query result arrives to the Cloud. Since this needs to be done in the presence of communication and
node failures, each IoT should send its updates to a set of cloudlets and the latter should acknowledge
(Figure 3). The cloudlets then should use a leader to unify their updates and forward concise query
results to the Cloud. The cloudlet layer must function well in case of a failing leader. Therefore, a set of
cloudlets, called guards, should monitor the leader’s activity and guarantee query result delivery until the
system decides on a new leader (Figure 4).

(iii) The management of general purpose services can help to overcome capability differences among
individual nodes via task load-balancing. Such tasks can be initiated by IoT users that need to
leverage

register
Cloudlet

layer

cloud control

register IoT

IoT
IoT

d

ata

co
n

tro
l

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 47, Issue 04) and (Publishing Date: 10
th

 December, 2018)

(An Indexed, Referred and Impact Factor Journal)

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com
214

Figure 4: The inner-structure of the proposed cloudlet layer

Algorithm 1: A high-level overview on algorithms 3 and 4

1 Registers shared between the modules in algorithms 3, 5, and 6 info: has the form of (devices, cloudlets, leader, guards),
where the field devices is a set of IoT devices, their models and the information needed for failure detection;
cloudlets is a set of cloudlets and the information needed for failure detection; leader of the form (seq, id) is the
cloudlets’ current leader and an associated sequence number; guards is a set of cloudlets ids (a subset of cloudlets) that
have been selected as guards;

/* the module for the self-stabilizing cloud (Algorithm 3) */

2 Local variables: newCloudlet/newIot: new cloudlets and IoTs (edge devices) and their models; sequence: leadership
number;

3 do forever begin

4 if the reset procedure is inactive and fresh information was recived from all trusted (not to be faulty) cloudlets

then

5 Use newIot, newCloudlet and fault detection information for updating devices and cloudlets, respectively;

6 if leader / cloudlets then elect a leader with sequence++;

7 if sequence = MAXINT then invoke the reset procedure;

8 if guards ∩ cloudlets = ∅ then select new guards;

9 Once the reset procedure is done, initialize all local variables;

10 upon registration request arrival from an IoT or a cloudlet, update the set newIot and newCloudlet, respectively;

11 upon RESET message arrival, invoke the distributed reset procedure;

/* the module for IoT (Algorithm 4) */

12 Local variables for the IoT module: model: a data structure that encodes the recent sensory readings; cloudletModel :
recent model received from the cloudlet; cloudletList: dissemination point list; lastUpdate: time of the last update
reception from a cloudlet; msgseq : a positive integer used as a sequence number for messages sent to cloudlets;
MSG: a set that stores the highest message sequence received;

13 do forever begin

14 if lastUpdate was too long ago then initialize and register at the Cloud this IoT;
15 else if an update is needed then

16 foreach cloudlet in cloudletList do send msgseq ++, model ;

17 if msgseq = MAXINT then invoke the reset procedure;

18 upon m = ⟨seq, list, model⟩ arrival from a cloudlet do {if m’s seq is fresh then update cloudletList, cloudletModel ,

lastUpdate and MSG reply;}

 19 upon reply m = ⟨seq⟩ arrival from a cloudlet, update msgseq;

on the cloudlet capabilities. Also, cloud services may wish to avoid communication-intensive
computations, such as virtual traffic light that base its decisions on the current road traffic conditions
that different vehicles report. The fault-tolerant management of such services can be based on state-
machine replication that is well-synchronized with query operations.

4 Proposed Solution

Algorithms 1 and 2 provide a high-level description of our solution, and the details appear in algorithms
3, 4, 5 and 6, which implement the proposed solution to the above task specifications by considering
the code to be executed by the Cloud, IoT devices, cloudlets, and respectively, the emulators of the
replicated state-machine.

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 47, Issue 04) and (Publishing Date: 10
th

 December, 2018)

(An Indexed, Referred and Impact Factor Journal)

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com
215

Algorithm 2: A high-level overview on algorithms 5 and 6

/* the module for the self-stabilizing cloudlet (Algorithm 5) */

20 Local variables: deviceSet: a set of IoT devices and their most recently received models; agreegateInfo: a set of data
structures encoding aggregated sensory information; msgc: a positive integer used for ordering message sent to
the leader and guards; msgtoiot: a positive integer used for ordering messages sent to IoT devices; MSGc: a set of
(id, seq) pairs that stores the highest message sequence received by cloudlet id; MSGSEQ : a set of (id, seq) pairs
that stores the highest message sequence received by IoT id;

21 do forever begin

22 if the reset procedure is inactive and i / cloudlets then initialize and register at the Cloud this cloudlet;
23 else if the reset procedure is inactive then

24 Use devices, deviceSet and cloudlets to update deviceSet, MSGSEQ and MSGc, respectively;
25 foreach IoT j that this cloudlet is responsible for do send info about msgtoiot++, the cloudlets that are

responsible for this IoT and the model of this IoT;
26 foreach j that is a guard or a leader do send info about msgc++ and the aggregated data received from the IoT

that this cloudlet is responsible for;

27 if msgseq = MAXINT then invoke the reset procedure;

28 upon m = ⟨seq, model⟩ arrival from an IoT do {Acknowledge m and update deviceSet and deviceSet}

29 upon m = ⟨seq, aggregated⟩ arrival from a cloudlet do {Acknowledge m and update agreegateInfo and MSGc}

30 upon m = ⟨seq⟩ arrival from an IoT do {update msgtoiot}

31 upon m = ⟨seq⟩ arrival from a cloudlet do {update msgc}

/* the module for self-stabilizing replication for guards and leader (Algorithm 6) */

32 Local variables: replicaState[]: an array of the state machine’s replica, where rep[i] refers to the one that processor pi
maintains, and replicaState[j] refers to the last arriving message from pj containing pj ’s replicaState[j]. myLeader
stores the identifier of the local leader. The term view refers to the set of replicas that the leader considers to be
up and connected, i.e., they can participate in the emulation of the state-machine. FD stores the processors that the
(local) failure detector considers as active;

33 do forever begin

34 if the Cloud propses leader to be this replica but myLeader does not or the view is not all trusted (not to be failing) guards and
this replica then propose a view with this replica as a leader as well as all trusted (not to be failing) guards as
members;

35 if myLeader refers to this replica but the Cloud proposes another trusted guard then update myLeader to the proposed one;
36 if this replica is the leader and all replicas have completed a communication round then compute the new state of the

automaton and update replicaState;
37 else update replicaState according to the one of the leader replica and send your input to the leader;
38 if this replica is a guard that is not lLeader but lLeader is suspected (to be failing) then reset myLeader and update data

about the local state of this replica;
39 else if the myLeader is well-defined (not reset) then send this replica’s state to leader;

40 if this replica is the lLeader then broadcast this replica’s state to lGuards ∩ FD;

 41 upon m arrival from a guard or a leader do {update replicaState with m;}

Algorithm 3 assumes the availability of a self-stabilizing cloud infrastructure, such as [7].
Overview. The Cloud periodically monitors the system and keeps track of the Cloudlets and IoT
devices that are up and running. Based on this information, and according to some mapping, each
cloudlet is associated with a list of IoT devices. The IoT devices periodically send their data (e.g.,
sensory information) to their associated cloudlet(s). Instead of having each cloudlet to report directly
to the cloud, each cloudlet reports its collected data to a leader. The leader is the one that collects
and aggregates all data and reports it to the Cloud (via shared registers). The above constitutes a
―normal‖(fault-free) operation. However, due to unexpected transient faults or more permanent faults
(e.g., a cloudlet fail-stopping), as well as the need for bounded counters, additional checks must take
place at the different components of the system. Algorithms 3, 4, and 5 present such details for the
Cloud, the IoT devices and the Cloudlets, respectively. Furthermore, in the event that the leader fail-
stops, we do not want the data flow to the cloud to be suspended or critical information to be lost. To
this respect, from the list of operational cloudlets, the Cloud also appoints a set of guards. The purpose
of the guards is to monitor more frequently the status of the leader and in the event that the leader fail-
stops, they report the latest collected data to the Cloud. Therefore, in Algorithm 5, each cloudlet
reports its collected data not only to the leader, but also to the guards. Since the leader and the
guards need to maintain consistent information on the collected data (and on any other

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 47, Issue 04) and (Publishing Date: 10
th

 December, 2018)

(An Indexed, Referred and Impact Factor Journal)

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com
216

information the control plane could be maintaining), they run Algorithm 6, which realizes a self-
stabilizing state-machine replication mechanism. In Section 5 we provide the correctness proof
illustrating that our algorithmic framework can self-stabilize in a constant number of communication
rounds, while Section 6 shows through a large testbed that there is no information loss even in the
presence of multiple, different and randomly injected failures to the fog ecosystem.

We now proceed to present more details. We start by describing the registers that are shared by
the nodes. Then, we go through the code according the above functionality list.
Registers. The shared register data stores the aggregated sensory information that is collected by the IoTs
(lines 65–66), aggregated by their corresponding cloudlets (line 97), and written by the leader (line 125).
The Cloud and the cloudlet exchange control information via the shared registers info and infoAck . The
register info includes the fields (IoT) devices, cloudlets, leader and guards. The register infoAck is an array,
such that the entry infoAck [k] holds pk ’s acknowledgment, where pk ∈ C is a cloudlet and the
acknowledgment includes all the fields of info. In detail, the Cloud, pcloudID, stores its view on the
system membership in info (line 56) and cloudlet pk acknowledges the reception of this information by
copying the value of info to infoAck [k] (line 88). Moreover, pcloudID selects, when needed, new cloudlets’
leader (line 51) and guards (line 53).
Registration. IoTs (edge devices) and cloudlets register directly at the Cloud by sending a registration
message (lines 65 and 89) after initializing their local variables and communication channels. This initial-
ization guarantees that the joining node (or its communication channels) does not hold stale
information. Once the registration message arrives to the Cloud, pcloudID, the Cloud lists the joining node as
a newcomer (lines 57 and 58). These newcomers will be listed as the system’s IoT devices and cloudlets
(lines 49 to 50) after the completion of the previous update round of these sets, which line 48 assures.
The proposed solu- tion assumes access to unreliable failure detectors. This allows the Cloud not to wait
for cloudlets that are suspected to be faulty as well as to remove failing nodes from the IoT and cloudlet
sets.
Query. We consider queries that are initiated by Cloud applications and require repeated updates.
These queries include the Cloud current belief about the anticipated result, which we refer to as the
query model. This allows IoT devices to reduce the number of times in which they transmit results to
periodic queries since there is no need to transmit a result that fit the current belief of the Cloud
according to the query model.

In detail, the registration procedure constructs up-to-date views on the sets of IoT devices and
cloudlets in the shared register together with the current leader and guards. The proposed solution
associates with each IoT the query description and model. This information is stored in devices. The
cloudlets use a function, myIoT (), for mapping between them and the IoTs that they are responsible to
communicate with (line 96). (A possible mapping could be to have the IoTs being assigned to the
cloudlets in the same region, based on their proximity. Nevertheless, our system is independent on the
specific mapping employed.) Cloudlets send the queries (along with their models) to these IoTs. The
latter store the arriving information and acknowledge (lines 71 to 74). Once in a predefined periodicity,
the IoTs update the query results, if needed (line 66). The cloudlets acknowledge the update arrival (lines
74 and 104). The cloudlets in turn periodically aggregate the sensory information received by the IoTs
and send it to the leader and the guards (line 97). The leader updates the shared repository with the
query results (line 125), whereas the guards serve as warm-backup leaders. We assume access to the
functions electLeader() and selectGuards() that for a given set of system cloudlets elect a leader and select
guards, respectively. In electing a leader and guards, we may want nodes that are more stealth, maybe
closer to the IoT devices or in the center of the coverage area (e.g., in the center of the city); the
leader/guard selection problem can be inherent to the fog service placement problem (FSPP) [23], which
is a different challenge in fog computing than the studied one. Nevertheless, in our system we could
swap in/out FSPP algorithms and we are resilient to the algorithm in use.
State-machine replication. Since both the leader and the guards receive aggregated sensory information from
the cloudlets, they need to be in sync with respect to this information. More generally speaking, the
leader and the guards could provide additional service as part of the control plane. So, they need to
coordinate their activities and maintain consistent state between them. The fact that the system is
asynchronous, together with the need for self-stabilization, makes it quite a challenging task. To this
respect, we have the

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 47, Issue 04) and (Publishing Date: 10
th

 December, 2018)

(An Indexed, Referred and Impact Factor Journal)

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com
217

leader and the guards to run Algorithm 6.
The algorithm maintains a consistent state (aggregated sensory information) by performing multicast

rounds coordinated by the leader. All necessary replica information (including the state) is maintained
by each node in array rep[] (line 113), which is exchanged between the leader and the guards (lines
143–145). In detail, once a cloudlet realizes that it has become the leader (line 130), it proposes to
install a view of the current members, which includes itself and the guards that according to its local
failure detector have not fail-stopped. The guards start following the leader towards installing this view
by adopting its proposal (line 140). Once the leader sees that the view members have adopted its
proposal (lines 133 and 115), it builds the new state based on the collected messages and states (lines
136 and 116) and proceeds to install the view. The guards adopt the leader’s rep – including the (new)
state (lines 139 and 120) completing in this way the installation of the view (lines 135 and 117).
The multicast rounds can now begin, which are coordinated by the leader (lines 134 and 122–126) and
followed by the guards (lines 138 and 121). The access to the application’s message queue (commands to
be executed by the state machine) is done via fetch(), which returns the next multicast message; the
state transition function apply(state, msg) applies the aggregated input array msg to the replica’s state and
produces the local side effects. Simply put, in our case, the input to the state machine is the aggregated
sensory information, which is sent by the cloudlets to the leader and the guards in Algorithm 5 (line 97)
and stored by the latter in agrregateinfo (line 107). So, essentially the multicast rounds of the state
machine keep this information consistent among the leader and the guards. At the end of each
multicast round, the leader updates the sensory information maintained in the shared register data (line
125).

In the event of a leader fail-stop, and until the Cloud assigns a new leader (line 51), the guards
update the data repository (lines 141–141), instead; this ensures a continual update of the sensory
information (which, depending on the application, could be crucial). If there is a change in the set of
guards (either due to a fail-stop or due to an update of this set by the Cloud), then the leader begins
the procedure to install a new view (line 131) with the new membership, without the need of any
external intervention (including that of the Cloud). The failure detector abstraction (defined in line
113) can be implemented using heartbeats and counter thresholds (see for example [9]), or using
―hello‖ messages and timeouts in a more time-informed setting (as we do in our simulation study in
Section 6).

Recovering the system state via global reset. Self-stabilization requires bounded space, which includes
bounded counters. Counters can grow up to a predefined size MAXINT , e.g., 2

64
 1. Under normal

operation, and if say, a counter is incremented every nano-second, then this limit could be reached in
approx. 146 years. However, a transient violation of the assumptions according to which the system was
designed to operate can corrupt the counter and cause it reach MAXINT . In such a case (lines 68,
99, and 144), the cloudlet or IoT holding this counter will send a RESET message to the Cloud, calling
for a global system reset. The Cloud, upon receiving such a message (line 59) or the sequence counter
reaches MAXINT (line 52), initiates the reset procedure: it sets the shared register info into (line 52 or line
59), and waits until all non-faulty cloudlets have acknowledged this (via the shared array infoAck , line
55), before it unregisters all cloudlets and IoT devices (by setting info into (, , ,)) and flashes all its local
variables. This causes each cloudlet (line 89) to register again after a local reset of the node state and its
communication channels, following the registration procedure described above. Since the IoTs are no
longer in info.devices, no cloudlet will contact them, causing each (non-faulty) IoT to timeout and
hence also register again after a similar initialization procedure (line 64).

5 Correctness Proof

Our analysis demonstrates a constant time recovery from arbitrary transient faults. It considers the in-
terleaving model [13], in which the node’s program is a sequence of (atomic) steps. Each step starts with an
internal computation and finishes with a single communication operation, i.e., message send or receive.
The state, si, of node pi ∈ P includes all of pi ’s variables as well as the set of all incoming
communication channels. Note that pi ’s step can change si as well as remove a message from
channelj,i (upon message arrival) or add a message in channeli,j (when a message is sent). The term system
state refers to a tuple of

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 47, Issue 04) and (Publishing Date: 10
th

 December, 2018)

(An Indexed, Referred and Impact Factor Journal)

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com
218

Algorithm 3: Code for the self-stabilizing cloud pcloudID.
42 Variables: newCloudlet/newIot: new cloudlets and IoTs and their models (bounded by cloudletSetSize); sequence: leadership

number;

43 Shared registers: data: is a data structure that stores the sensory information, to be processed by the cloud
depending on the application; it includes records of the form (id, leader, round, dat), where id is the cloudlet’s unique
id that included the context dat in the data structure, at round round of the state machine with leader leader; info:
has the form of (devices, cloudlets, leader, guards), where the field devices is a set (bounded by deviceSetSize) of IoT
devices, their models and the information needed for failure detection; cloudlets is a set (bounded by cloudletSetSize) of
cloudlets and the information needed for failure detection; leader of the form (seq, id) is the cloudlets’ current leader and
an associated sequence number; guards is a set of cloudlets ids (a subset of cloudlets) that have been selected as
guards; infoAck[cloudletSetSize]: an array that stores the latest value of info that each cloudlet has read;

44 Interface: suspectedIot(set) and suspectedCloudlet(set): return the sets of suspected to be faulty IoT devices and cloudlets,
respectively; electLeader(set): returns the elected leader from set; selectGuards(set): returns the set of guards from
set;

45 do forever /* use predefined periodicity */ begin

46 let lInfo := (lDevices, lCloudlets, lLeader, lGuards) := read(info);

47 let lInfoAck := read(infoAck);

48 if = lInfo (lInfo = lInfoAck [k] : k C suspectedCloudlet(C)) then

49 (lDevices, newIot) ((lDevices (k,) : k suspectedIot(lDevices)) newIot,);

50 (lCloudlets, newCloudlet) ((lCloudlets (k,) : k suspectedCloudlet(lCloudlets)) newCloudlet,);

51 if lLeader.id lCloudlets then lLeader (sequence++, electLeader(lCloudlets));

52 if sequence = MAXINT then write(info,);

53 if (lGuards lCloudlets) = then lGuards selectGuards(lCloudlets lLeader.id);

54 write(info, (lDevices, lCloudlets, lLeader, lGuards));

55 else if {⊥, (∅, ∅, ∅, ∅)} ⊇ ({lInfo} ∪ {lInfoAck [k] : k ∈ C \ suspectedCloudlet(C)}) then write(info, (∅, ∅, ∅, ∅));
(newCloudlet, newIot, sequence) ← (∅, ∅, 0);

56 else if {⊥} ⊂ ({lInfo} ∪ {lInfoAck [k] : k ∈ C \ suspectedCloudlet(C)}) then write(info, ⊥);

57 upon message m = ⟨REGISTER⟩ arrival from IoT j at time t do newIot ← (newIot ∪ {(j, t, ⊥)});

58 upon message m = ⟨REGISTER⟩ arrival from cloudlet z at time t do newCloudlet ← (newCloudlet ∪ {(z, t)});

 59 upon message m = ⟨RESET⟩ arrival from device k do write(info, ⊥);

the form c = (s1, s2, · · · , sn) (system configuration), where each si is pi ’s state (including messages in
transit to pi). An execution (or run) R = c0, a0, c1, a1, . . . is an alternating sequence of system states cx and
steps ax, such that each cx+1, except c0, is obtained from the preceding one, cx, by the execution of
step ax. We say that execution R is legal if it satisfies the task specifications throughout R. We say that
a system state c is safe if every execution that start from c is legal. Definition 5.1 considers a system state
that Theorem 5.1 shows to be safe.

Definition 5.1 (Safe system state) We say that the system state c is safe if the following hold. (1) Let pi ∈ C and pj ∈ S,
such that (j, mj) ∈ myIoT (devicescloudID , cloudletscloudID). It holds that cloudletListj = cloudletList(j,
cloudletscloudID)∧(lastU pdatej ≤ clockj()). Moreover, devicescloudID = {(k, •) ∈ deviceSeti}∧ ((z, t, •) ∈ agreegateInfoj

 =⇒ pz ∈ C ∧ t ≤ clocki()) ∧ (j, •, mj) ∈ agreegateInfoj. (2) The value of msgseqi, msgci
and msgtoioti is greater or equal to any value of msgseq, msgc, and respectively, msgtoiot fields associated with pi in messages
and cloudlets. (3) |A| = 1, where A = {(v, su, r, sa, m) : pi, pj ∈
C ∧ (v, su, r, sa, m, •) = r ∈ {repi[j], repi,j})}, such that repi,j is a message that was sent in line 143 from pi
to pj . Moreover, msgleadercloudID .id[k] = inputk, where pk ∈ leadercloudID ∪ guardscloudID . (4) No counter has reached
MAXINT and there are no ⟨RESET⟩ messages.

We say that an execution is fair if every step that is applicable infinitely often is executed infinitely
often. Theorem 5.1 demonstrates the required properties for self-stabilization and use the term
(asynchronous) cycles of a fair execution R. A cycle is the shortest prefix of R in which every non-failing
node pi performs a completed iteration of node pi ’s do forever loop, all messages that pi sent during that
iteration were delivered, and all of the iteration’s requests were replied.

Theorem 5.1 The system’s state is safe within O(1) cycles.

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 47, Issue 04) and (Publishing Date: 10
th

 December, 2018)

(An Indexed, Referred and Impact Factor Journal)

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com
219

—

Algorithm 4: Code for IoT ioti
60 Local state: model: a data structure that encodes the recent sensory readings; cloudletModel : recent model received

from the cloudlet; cloudletList: a list (bounded by cloudletListSize) of dissemination points (ordered by descending
priority); lastUpdate: time of the last update reception from a cloudlet (according to IoT’s local time); msgseq : a
positive integer used as a sequence number for messages sent to cloudlets; MSG: a set of (id, seq) pairs that
stores the highest message sequence received by cloudlet id;

61 Interface: update(): receives the last sent model and received cloudletModel as well as the time in which that reception
occurred (lastUpdate). The function then updates model (and returns true) if the cloudlet model requires an
update due to change in sensory input, a timeout due to a missing acknowledgment from the cloudlet or a
change in the cloudlet model specifications;

62 Function: iotInit(): the IoT device first resets all variables dealing with Cloudlet data and control information as
well as local data and control variables. Then it sends a special message INIT to the Cloud, so that the Cloud
removes all information about this device from the Cloudlets. Once this is done, the Cloud returns an
acknowledgment to the device, and the function returns.

63 do forever /* use predefined periodicity */ begin

64 if (clock() lastUpdate) > LIMIT then IoT init(); send(cloudID, REGISTER);
65 else if update(model, cloudletModel, lastUpdate) then

66 foreach id ∈ cloudletList do send(id, ⟨msgseq, model⟩);
67 msgseq ← msgseq + 1 /* if a message was sent */

68 if msgseq = MAXINT then send(cloudID, ⟨RESET⟩);

69 upon m = ⟨seq, list, model⟩ arrival from cloudlet j at time t = clock() begin

70 if m.seq > MSG|j.seq then

71 (⟨cloudletList, cloudletModel ⟩, lastUpdate) ← (⟨m.list, m.model⟩, t);

72 MSG ← (MSG \ {(k, •) : k ∈/ cloudletList ∨ k = j}) ∪ (j, m.seq);

73 send(j, ⟨MSG|j.seq⟩);

 74 upon message m = ⟨seq⟩ arrival from cloudlet z do msgseq ← max{m.seq, msgseq};

Proof. The proof considers the predicate pred = {⊥} /= ({info}∪{infoAck [k] : k ∈ C\suspectedCloudletcloudID(C)}).
We start by considering an execution in which pred holds throughout R, and thus pcloudID does not
executes lines 55 and 56. Under this assumption, we show that items 1 to 4 of Definition 5.1 hold
within (1) cycles. As a completely case, we consider a starting system state in which pred does not hold,
and show that, within O(1) cycles, the pred holds.

Item 1. Let (pi, pj) ∈ C ×S. Within O(1) cycles, the cloud pcloudID updates the devices and cloudlets fields

in info (line 54). Within O(1) cycles, pi reads devices and cloudlets (line 88) and send ⟨•, cloudletList(j, lCloudlets), m⟩
to IoT pj (line 96), such that (j, mj) ∈ myIoT (devicescloudID , cloudletscloudID). When that message arrives, pj
stores it in cloudletListj and cloudletModel j as well as updates lastU pdatej with the arrival time (line 71).
Thus, cloudletListi = cloudletList(i, cloudletscloudID) ∧ (lastUpdatei ≤ clocki()). Lines 92 and 102 implies
devicescloudID = {(k, •) ∈ deviceSetj} and line 107 implies ((z, t, •) ∈ agreegateInfoj =⇒ pz ∈ C ∧ t ≤
clocki()) ∧ (j, •, mj) ∈ agreegateInfoj .

Item 2. Suppose that in R’s starting state, Item 3 does not hold with respect to a pi ’s field. Within
O(1) cycles, any message containing msgseq , msgtoiot or msgc arrive to its destination pj . Thus, for the
sake of a simple presentation, we focus on the case in which Item 3 does not hold in node pj with
respect to a field that is associated with node pi. We observe that within (1) cycles, pi and pj
complete a message round-trip that include this filed. In detail, these message are sent in lines 66,
96 and 97 and received in lines 74, 110 and 111, respectively. Note that whenever pi receives any such
message, pi updates the local value with the received one, in case the latter is greater than the former.

Item 3. Within (1) cycles, leader and guards are set by pcloudID (line 54) and all cloudlets read these values
(line 88). We show that if a new leader has been put in place (or the view has become inconsistent),
the leader installs a new view which includes itself and the guards. For this purpose, it first proposes
this view (line 136), which it is accepted by the guards (line 140) within (1) cycles. Then, within (1) cycles
it updates rep[] and installs this view (lines 135 and 139), in which the guards have updated their rep[]s
based on the one of the leader. After that the leader resumes the round-base updates for
maintaining the state among itself and the guards (lines 134, 138, and 122–126), hence stabilizing the
state machine replication. Moreover, it aggregates inputk : pk ∈ leadercloudID ∪ guardscloudID, such as
msgleadercloudID.id[k] = inputk.

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 47, Issue 04) and (Publishing Date: 10
th

 December, 2018)

(An Indexed, Referred and Impact Factor Journal)

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com
220

/ ⊥

/ ⊥ ∧ ∈

Algorithm 5: Code for cloudlet pi

75 Local state: deviceSet: a set (bounded by deviceSetSize) of IoT devices and their most recently received models;

76 agreegateInfo: a set of data structures encoding aggregated sensory information;

77 msgc: a positive integer used for ordering message sent to the leader and guards;

78 msgtoiot: a positive integer used for ordering messages sent to IoT devices;

79 MSGc: a set of (id, seq) pairs that stores the highest message sequence received by cloudlet id;

80 MSGSEQ : a set of (id, seq) pairs that stores the highest message sequence received by IoT id;

81 Shared registers: info and infoAck: as in Algorithm 3;

82 Interface: aggregate(deviceSet): returns the aggregated sensory information;

83 cloudletList(k, set): for a given IoT device iotk and a set of cloudlets, this function returns the cloudlet list that iotk

should use (prioritized in an descending order);

84 myIoT (): projection of the IoTs that are within the cloudlet’s responsibility;

85 cloudID: the address of the Cloud;

86 Function: cloudletInit(): the cloudlet first resets all variables dealing with the data and control information of
cloudlets and IoT devices as well as its local data and control variables. Then it broadcasts a special message
INIT to all other cloudlets, and to the Cloud so that the other cloudlets remove all information about this
cloudlet; the Cloud removes all relevant information about this cloudlet from the IoT devices. Once the
cloudlet receives acknowledgments from all the cloudlets and the Cloud, the function returns.

87 do forever /* use predefined periodicity */ begin

88 let lInfo := (lDevices, lCloudlets, lLeader, lGuards) := read(info); write(infoAck [i], lInfo);

89 if lInfo = i / lCloudlets then cloudletInit(); send(cloudID, REGISTER)) ;

90 else if lInfo = then

91 if i / (lGuards lLeader.id) then (agreegateInfo, MSGc) (,);

92 deviceSet (deviceSet (k,) : k / lDevices);

93 MSGSEQ (MSGSEQ (k,) : k / deviceSet);

94 MSGc (MSGc (k,) : k / lCloudlets);

95 let (iotAdd, msgAdd) := (0, 0);

96 foreach (j, m) ∈ myIoT (lDevices, lCloudlets) do {send(j, ⟨msgtoiot, cloudletList(j, lCloudlets), m⟩);
iotAdd ← 1};

97 foreach j ∈ lGuards ∪ {lLeader.id} do {send(j, ⟨msgc, aggregate()⟩); msgAdd ← 1};

98 (msgtoiot, msgc) ← (msgtoiot + iotAdd, msgc + msgAdd);

99 if MAXINT ∈ {msgc, msgtoiot} then send(cloudID, ⟨RESET⟩);

100 upon message m = ⟨seq, model⟩ arrival from IoT j at time t begin

101 if m.seq > MSGSEQ |j.seq then

102 deviceSet ← (deviceSet \ {(j, •)}) ∪ {(j, t, m)};

103 MSGSEQ ← (MSGSEQ \ {(j, •)}) ∪ (j, m.seq);

104 send(j, ⟨MSGSEQ |j.seq⟩);

105 upon message m = ⟨seq, aggregated⟩ arrival from cloudlet z at time t begin

106 if i ∈ lGuards ∪ {lLeader.id} ∧ m.seq > MSGc|z.seq then

107 agreegateInfo ← (agreegateInfo \ {(z, •)}) ∪ {(z, t, m)};

108 MSGc ← (MSGc \ {(z, •)}) ∪ (z, m.seq);

109 send(z, ⟨MSGc|z.seq⟩);

110 upon message m = ⟨seq⟩ arrival from IoT k do msgtoiot ← max{m.seq, msgtoiot}

111 upon message m = ⟨seq⟩ arrival from cloudlet z do msgc ← max{m.seq, msgc}

Item 4. Suppose that in R’s starting state, Item 3 does not hold at node pi. We observe that within
O(1) cycles, either Item 3 holds and Item 4 does not hold, or both hold. Moreover, within O(1)
additional cycles, RESET arrives to pcloudID and the assumption above does not hold (line 59). Thus,
the rest of the proof considers complementary case.

For the case that is competently to the assumption that appears in the proof start, suppose,
towards a contradiction, that pred does not hold in R’s starting state. Moreover, suppose that any
prefix R

′
 of R = R

′
 R

′′
 that has (1) cycles, does not have a matching suffix R

′′
 during which the

predicate pred holds. Since pred does not hold during R
′
, pcloudID does not executes lines 49 to 54 during

R
′
. Therefore, it must executes either line 55 or 56 for a constant number of times during R

′
.

Suppose that pcloudID does not execute line 55 during R
′
. Thus, within (1) cycles, pcloudID executes

repeatedly line 56 until the if-statement condition of line 55 holds. Then, the if-statement condition of
line 56

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 47, Issue 04) and (Publishing Date: 10
th

 December, 2018)

(An Indexed, Referred and Impact Factor Journal)

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com
221

/ ∧ ∈ ∧ ∈ ∧

∧ ∧ ∧ / ∨ / ∧ /

Algorithm 6: Self-stabilizing replication for guards and leader, code for cloudlet pi
112 Interfaces: fetch() next multicast message, apply(state, msg) applies the step msg to state (while producing side effects),

synchState(replica) returns a replica consolidated state, synchMsgs(replica) returns a consolidated array of last
delivered messages, failureDetector() returns a vector of processor ids, cloudID returns the address of the Cloud;

113 Variables: rep[] = view = ID, set , status Propose, Install, Multicast , (multicast round number) rnd, (replica)

state, (last delivered messages) msg[n] (to the state machine), (last fetched) input (to the state machine), propV
= ⟨ID, set⟩, (recently live and connected component) FD⟩: an array of the state machine’s replica, where rep[i] refers
to the one that processor pi maintains, and rep[j] refers to the last arriving message from pj containing pj ’s
rep[j]. FD stores the failureDetector() output, i.e., the set of processors that the failure detector considers as
active. myLeader stores the id of the local leader; if none. The view.ID (and propV.ID) is composed by the id
and leader sequence installing the view, and counter cnt, in case the same leader installs a new view;

114 Shared registers: info and data: as in Algorithm 3;

115 Macros: roundP roceedReady() = {(∀pj ∈ view.set: rep[j].(view,

status, rnd) = (view, status, rnd)) ∨ ((status /= Multicast) ∧ [(∀pj ∈ propV.set : rep[j].(propV, status) = (propV,

Propose)) ∨ (∀pj ∈ propV.set : rep[j].(propV, status) = (propV, Install))]};

116 coordinateP ropose() = {(state, msg, status) ← (synchState(rep), synchMsgs(rep), install};

117 coordinateInstall() = {(view, status, rnd) ← (propV, Multicast, 0)};

118 roundReadyT oF ollow() = {rep[myLeader].rnd = 0 ∨ rnd < rep[myLeader].rnd ∨ rep[myLeader].(view /= propV)};

119 followPropose() = {(status, propV)←rep[myLeader](status, propV)};

120 followInstall() = {rep[i] ← rep[myLeader]};

121 followMcastRnd() {rep[i] ← rep[myLeader]; apply(state, rep[myLeader].msg); input ← fetch();}

122 procedure coordinateMcastRnd() do begin

123 apply(state, msg); input ← fetch();

124 foreach pj C do if pj view.set then msg[j] rep[j].input else msg[j] ;

125 write(data, (i, lLeader, rnd, rep[i].state));

126 rnd ← rnd + 1; if rnd = MAXINT then view.set ← ⊥ /* Forces a view change in line 131/;

127 do forever /* use predefined periodicity */ begin

128 FD failureDetector();

129 let (lDevices, lCloudlets, lLeader, lGuards) := read(info);

130 if lLeader.id = i myLeader = i then (status, propV , myLeader) (Propose, (lLeader, cnt = 0), FD

(lGuards i) , i);

131 if lLeader.id = i myLeader = i ((status = Multicast view.set = S)) (status = Multicast propV.set = S)))

then (status, propV, myLeader) (Propose, (lLeader, cnt++), S) , i), where S := FD (lGuards i ;

132 if k = i i lGuards k FD, where k = lLeader.id then (myLeader, status) (k, rep[k].status);

133 if lLeader.id = i roundP roceedReady() then

134 if status = Multicast then coordinateMcastRnd();

135 else if status = Install then coordinateInstall();

136 else if status = Propose then coordinateP ropose();

137 else if lLeader.id = i i lGuards lLeader.id FD roundReadyT oF ollow() then

138 if status = Multicast then followMcastRnd();

139 else if status = Install then followInstall();

140 else if status = Propose then followPropose();

141 if lLeader .id /= i ∧ i ∈ lGuards ∧ lLeader .id ∈/ F D then

myLeader ← ⊥; write(data, (i, lLeader, rnd, rep[i].state));

142 else if myLeader /= ⊥ then send rep[i] to myLeader;

143 if lLeader.id = i then ∀k ∈ lGuards ∩ FD send ⟨rep[i]⟩ to pk;

144 if cnt = MAXINT then send(cloudID, ⟨RESET⟩);

145 upon message m arrival from pj do rep[j] ← m;

does not hold again during R, and, within O(1) cycles, the if-statement condition of line 48 holds.
Thus, the system reaches R

′′
 within O(1) cycles. □

6 Evaluation

The previous section details the correctness proof of our self-stabilizing algorithmic process which, in
contrast to the current state-of-the-art, shows that even in the presence of failures a fog ecosystem can always recover in
constant time and compute analytic insights from IoT data.

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 47, Issue 04) and (Publishing Date: 10
th

 December, 2018)

(An Indexed, Referred and Impact Factor Journal)

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com
222

Figure 5: High-Level Overview of the Bus Network Topology
This section introduces a comprehensive evaluation of the effectiveness and runtime overhead of our

framework. First, we measure information delay that is the time interval required for IoT data to be
propagated in the network for analytics to be correctly derived in the presence of multiple and different
failures (e.g., cloudlet fail-stop, communication link drops). Second, we measure the additional runtime
footprint that our framework incurs to exemplary state-of-the-art distributed control planes (e.g., istio).
This provides a detailed overview of what is the cost, in terms of network overhead, of maintaining
data freshness and analytic computation correctness in the presence of failures. Results show that with our self-
stabilizing framework, control planes are able to compute analytics correctly with the information delay

maintained relatively stable despite of the presence of failures, while the network overhead scales linearly towards the IoT
load, as required by O1-O4 (Section 3).

For the experimentation, we introduce a real-world use-case of a smart city Bus Network Service
(BNS) evaluated under various execution scenarios. We opt to focus on experiments that use a publicly
available and real-world workload to truly reveal the strengths of our framework and its ability to deal
with high workload. Specifically, the workload originates from the Dublin smart city Bus Network
Service [2], comprised of 40GB of compressed data, tracking for 1 month the bus routes of 968 buses
(Jan. 2013). Each bus is equipped with a GPS tracking device recording every 1s location coordinates
and the current bus route delay. Figure 5 depicts a high-level overview of the BNS topology, where 16
cloudlets are deployed across Dublin’s major city regions, denoted for clarity as Ax, to decentralize the
BNS and increase the system responsiveness. We note that a bus route may span across different city
regions and a bus can be connected to multiple cloudlets depending on the cloudlet coverage. Each
cloudlet serves as an analytics engine that aggregates local bus updates and propagates an alert to
traffic operators (central cloud service) when 10 or more buses in a city area are reporting, in a 5min
sliding window, delays over one standard deviation from the previous weekly mean.

To experiment with large-scale deployments and ensure both result reproducability and algorithm
adop- tion, we have designed a simulation testbed inspired by Kompics [6], an open-source
distributed systems message-passing component model, and extended the entity behavior model to
facilitate fault models over a

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 47, Issue 04) and (Publishing Date: 10
th

 December, 2018)

(An Indexed, Referred and Impact Factor Journal)

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com
223

control plane in fog computing ecosystems
2
. The testbed is run in an Openstack private cloud on a server

configured with 16VCPU clocked at 2.66GHz, 16GB RAM and 260GB disk. The network configuration
between testbed entities adopts a gaussian kernel with the following mean values: (i) Cloudlet-to-
Cloud latency 100ms; (ii) IoT-to-Cloud latency 250ms; (iii) intra-region Cloudlet-to-Cloudlet latency
10ms; (iv) inter-region Cloudlet-to-Cloudlet latency 100ms; and (v) IoT-to-Cloudlet latency 20ms. We
opt for these specific capabilities so that the testbed resembles an actual geo-distributed fog deployment
over a city envi- ronment. All simulation scenarios are run 100 times with cloudlets and IoT devices
starting at randomized time intervals. For the IoT device placement, we have implemented the
registration interface of Algorithm 2 so that when an IoT device (e.g., a bus) requests to join the network,
the central authority (e.g., the cloud) responds with a list of valid cloudlets that are the ―closest‖ to the
device in the device’s operating (city) region. The same strategy will hold for when the device has
changed it’s operating region (e.g., bus moves from A1 to A2). Finally, the selection of the leader and
the guards was done randomly, since our cloudlets are homogeneous.

For the widespread experimentation of different fault scenarios over the testbed, we adopt the
Netflix Chaos Monkey framework [1]. This enables the configuration and (random) selection of faults and
entities to infest at given time intervals, or at random, depending on the evaluation scenario. Unless
otherwise stated, the aforementioned topology and network configuration will be considered as the baseline
configuration.

 Information Delay

In this set of experiments, we show the effect of different failures to the timeliness of analytic
computation. We consider four experiment runs with faults injected at random and examine how
information delay is affected by:

- randomly failing a different number of regular cloudlets;

- failing the guards;

- failing the leader;

- randomly dropping the communication link between IoT devices and cloudlets.

Figure 6 depicts the information delay as the number of concurrently failing cloudlets increases. In this
box-plot the median information delay is denoted by the line in the box, while the box length extends

between the first and third quantile with outliers depicted as independent points. With zero cloudlets
we denote the information delay in normal operation (without failures). From Figure 6, we observe that

information delay is not affected, despite slight deviations, while the number of failing cloudlets
remains under 7. After this, randomly selecting concurrent cloudlets hinders the extreme case of wiping

out all cloudlets of a city region. This results in added delay as IoT data for the specific region must
be directly propagated to the cloud. For this experiment run, system recovery is only required when an

IoT device is left with no cloudlet in its coverage. In this extreme case, the IoT device must contact
the cloud to validate the registration. However, the involvement of the cloud naturally hinders a

communication overhead. Thus, despite information delays for extreme cases of concurrent cloudlet failures, analytic
computation is correct at all times while the system recovers from faults in a bounded number of communication rounds, as

required by O1 and O3 (Section 3). Figure 7 depicts how information delay is affected by the failure of the
control plane guards and leader when the baseline deployment is configured with two guards. We observe

that the timeliness of analytics computation is neither affected by the failure of the leader or the guards.
This concurs with the correctness proof that shows that, the self-stabilizing fog ecosystem can return back to a

legal state within (1) time,

which is sufficient to propagate information without delay, as required by O4 (Section 3).
The next experiment run studies how information delay is affected by the temporary drop of the

network link between IoT devices and cloudlets. To achieve this, we artificially block for a

predefined interval the

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 47, Issue 04) and (Publishing Date: 10
th

 December, 2018)

(An Indexed, Referred and Impact Factor Journal)

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com
224

Figure 6: Information delay vs number of concurrent cloudlet failures
link between affected IoTs and cloudlets in each region, thus maintaining only the link with the cloud. In
Figure 8 we observe that the information delay increases as more devices experience a link drop. This
occurs because the affected IoTs detect the link absence and, thus, must communicate with the cloud
for updates which takes more time. Still, analytics are computed without corrupted or missing IoT data. This
extreme case, of failing all the communication links among IoT and cloudlets, highlights the importance of
having a sufficient amount of cloudlets in each region to cope with concurrent link failures.

 Runtime Footprint

In this set of experiments, we provide an analysis depicting the network overhead of different
components comprising our framework and the experiment testbed. Figure 9 depicts the network
traffic over the data and control plane for a simulation run of the baseline configuration when random
failures of the cloudlets’ leader, guards, and cloudlets are introduced. The figure depicts the network
overhead for 5min where the 30s bootstrap period is omitted. First, we observe four distinct segments
(separated by vertical lines). During each segment our framework maintains a stable message
exchange rate for both planes, with the data plane traffic approximately x3.5 higher than the control
plane traffic. In the first segment (30s to 75s) the system exhibits no faults. At the 75th second, the
leader fails and we observe a slight drop in both the control plane traffic (from 950KB/s to 850KB/s)
and the data plane (from 3300KB/s to 3100KB/s). When the cloud discovers the leader failure, it
elects a new leader at the 88th second and the system recovers back to a legal state, with a slight
increase of the control plane traffic (900KB/s). Next, at the 150th second the two guards fail and the
control plane traffic falls to 700KB/s while the data plane traffic falls to 2600KB/s. As before, the
cloud elects two new guards and the control plane traffic stabilizes at 750KB/s. Finally, at the 225th
second (4th segment) three cloudlets fail and both control and data traffic drop to 550KB/s and
2100KB/s, respectively. These results show that a constant number of messages is exchanged,
validating the objectives O1 and O3 (Section 3).

Next, we show that the control and data plane network traffic scales linearly towards the number
of different system entities, as required by O2. Table 1 shows the results of different configurations in
percentage increments from the baseline.

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 47, Issue 04) and (Publishing Date: 10
th

 December, 2018)

(An Indexed, Referred and Impact Factor Journal)

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com
225

Figure 7: Information delay vs number of concurrent guard and leader failures
Guards. We observe that the overhead of adding guards increases linearly. Specifically, each
additional guard adds an overhead in the range of 4.75 5.68% for the control plane traffic and 4.82 5.02%
for the data plane traffic. It is worth pointing out that the previous experiment in Figure 7 showed that
even with all the guards failing concurrently, the information latency remains stable, and therefore,
for the studied baseline configuration, having two guards balances well the trade-off between
overhead and information delay.
Cloudlets. The overhead of adding extra cloudlets, for redundancy purposes, scales linearly while the IoT
load remains stable. Specifically, each additional cloudlet adds an overhead in the range of 7 .96 9.03%
for the control plane, and for the data plane the increment is approximately 6.2%. Obviously, the trade-off
is straightforward. Increasing the cloudlets, decreases the probability of delaying information
propagation for a city region, e.g., as in the case of Figure 6 after 7 cloudlets, at the cost of higher
network traffic.
IoTs. By increasing the workload (IoT devices), again, the network overhead is linearly increased.
Each additional IoT device adds a 0.094% overhead on the control plane traffic, while for the data
plane the incre- ment ranges between 0.085 0.087%. This increase is attributed to the fact that each
cloudlet communicates with more IoT devices.

7 Conclusions

In this paper we introduced a fault-tolerant framework for distributed control planes that enables fog
services to cope with a very broad fault model. To this end, we presented self-stabilizing algorithms
that guarantee automatic recovery within a constant number of communication rounds without the
need for external (hu- man) intervention. Using real-world data and actual queries of interest from an
intelligent transportation service, we demonstrate the performance gains of our framework, and thus the
promise of self-stabilization in fog computing. Our results show that despite information delays for
extreme cases of concurrent cloudlet fail- ures, analytic computation is correct, while the network
overhead is proportional to the number of cloudlets, guards, and devices. We believe that our self-
stabilizing framework is applicable to a wide range of fog services requiring strong fault-tolerance
guarantees.

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 47, Issue 04) and (Publishing Date: 10
th

 December, 2018)

(An Indexed, Referred and Impact Factor Journal)

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com
226

Figure 8: Information delay vs concurrent fail-stop IoT-Cloudlet network links

References

[1] Chaos monkey tool.

[2] Dublin smart city bus network data.

[3] Istio.

[4] Linkerd.

[5] Abdulaziz Alarifi, Fathi Abdelsamie, and Mohammed Amoon. A fault-tolerant aware scheduling
method for fog-cloud environments. PLOS ONE, 14(10):1–24, 10 2019.

[6] Cosmin Arad, Jim Dowling, and Seif Haridi. Message-passing concurrency for scalable, stateful,
recon- figurable middleware. In Middleware 2012, pages 208–228. Springer Berlin Heidelberg, 2012.

[7] Alexander Binun, Mark Bloch, Shlomi Dolev, Ramzi Martin Kahil, Boaz Menuhin, Reuven Yagel,

Thierry Coupaye, Marc Lacoste, and Aurélien Wailly. Self-stabilizing virtual machine hypervisor

archi- tecture for resilient cloud. In 2014 IEEE World Congress on Services, pages 200–207, 2014.

[8] Luiz Bittencourt, Roger Immich, Rizos Sakellariou, Nelson Fonseca, Edmundo Madeira, Marilia

Curado, Leandro Villas, Luiz DaSilva, Craig Lee, and Omer Rana. The internet of things, fog and

cloud continuum: Integration and challenges. Internet of Things, 3-4:134 – 155, 2018.

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 47, Issue 04) and (Publishing Date: 10
th

 December, 2018)

(An Indexed, Referred and Impact Factor Journal)

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com
227

[9] Peva Blanchard, Shlomi Dolev, Joffroy Beauquier, and Sylvie Delaët. Practically self-stabilizing
paxos replicated state-machine. In Networked Systems - Second International Conference, NETYS 2014,
Marrakech, Morocco, May 15-17, 2014. Revised Selected Papers, pages 99–121, 2014.

[10] Marco Canini, Iosif Salem, Liron Schiff, Elad Michael Schiller, and Stefan Schmid. Renaissance: A self-
stabilizing distributed SDN control plane. In ICDCS 2018, Vienna, Austria, July 2-6, 2018, pages 233–243,
2018.

[11] S. Chattopadhyay, S. Chatterjee, S. Nandi, and S. Chakraborty. Aloe: An elastic auto-scaled and self-
stabilized orchestration framework for iot applications. In IEEE INFOCOM, pages 802–810, 2019.

[12] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM, 17(11):643–
644, 1974.

[13] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

[14] Shlomi Dolev, Chryssis Georgiou, Ioannis Marcoullis, and Elad Michael Schiller. Practically-self-
stabilizing virtual synchrony. J. Comput. Syst. Sci., 96:50–73, 2018.

[15] Michael J. Fischer and Michael Merritt. Appraising two decades of distributed computing theory re-
search. Distributed Computing, 16(2-3):239–247, 2003.

[16] Yotam Harchol, Aisha Mushtaq, James McCauley, Aurojit Panda, and Scott Shenker. CESSNA: Re-
silient edge-computing. In Proceedings of the 2018 Workshop on Mobile Edge Communications, pages 1–6.
ACM, 2018.

[17] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein. It’s hard to share: Joint service
placement and request scheduling in edge clouds with sharable and non-sharable resources. In ICDCS
2018, Vienna, Austria, July 2-6, 2018, pages 365–375, 2018.

[18] Cheol-Ho Hong and Blesson Varghese. Resource management in fog/edge computing: A survey on
architectures, infrastructure, and algorithms. ACM Comput. Surv., 52(5), September 2019.

[19] Radia Perlman. Interconnections (2Nd Ed.): Bridges, Routers, Switches, and Internetworking Protocols. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[20] Justine Sherry, Peter Xiang Gao, Soumya Basu, Aurojit Panda, Arvind Krishnamurthy, Christian
Maciocco, Maziar Manesh, João Martins, Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker.
Rollback- recovery for middleboxes. SIGCOMM Comput. Commun. Rev., 45(4):227–240, August 2015.

[21] W. Shi and S. Dustdar. The promise of edge computing. Computer, 49(5):78–81, May 2016.

[22] Gerry Siegemund and Volker Turau. A self-stabilizing publish/subscribe middleware for iot applications.

ACM Trans. Cyber-Phys. Syst., 2(2):12:1–12:26, June 2018.

[23] Olena Skarlat, Matteo Nardelli, Stefan Schulte, Michael Borkowski, and Philipp Leitner. Optimized iot
service placement in the fog. Service Oriented Computing and Applications, 11(4):427–443, 2017.

[24] D. Trihinas, L. Chiroque, G. Pallis, A. Fernandez, and M.D. Dikaiakos. ATMoN: Adapting the ‖Tem-
porality‖ in Large-Scale Dynamic Networks. In 38th IEEE International Conference on Distributed
Computing Systems (ICDCS 2018), 2018.

[25] D. Trihinas, G. Pallis, and M. Dikaiakos. Low-cost adaptive monitoring techniques for the internet of
things. IEEE Transactions on Services Computing, pages 1–1, 2018.

[26] Demetris Trihinas, George Pallis, and Marios Dikaiakos. ADMin: adaptive monitoring

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 47, Issue 04) and (Publishing Date: 10
th

 December, 2018)

(An Indexed, Referred and Impact Factor Journal)

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com
228

dissemination for the internet of things. In IEEE INFOCOM 2017, Atlanta, USA, May 2017.

[27] Chao Wang, Christopher Gill, and Chenyang Lu. Frame: Fault tolerant and real-time messaging
for edge computing. In ICDCS, pages 976–986, 2019.

[28] K. Wang, Y. Shao, L. Xie, J. Wu, and S. Guo. Adaptive and fault-tolerant data processing in
healthcare iot based on fog computing. IEEE Transactions on Network Science and Engineering, pages 1–1,
2019.

